
Niente
The FLAC Integrity Checker

by Howard Rogers
Version 1.0 – July 2021

Niente User Manual
by Howard Rogers
Copyright © 2021 Howard Rogers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the express prior permission of Howard Rogers (hjr@absolutelybaching.com)

Linux® is the registered trademark of Linus Torvalds in the United States and other countries. All other
trademarks are the property of their respective owners. Howard Rogers is not associated with any
product or vendor mentioned in this publication.

Niente User Manual v1.0 Page 2

mailto:hjr@absolutelybaching.com

Table of Contents
1.0 Introducing Niente... 5

1.1 Some Prior History.. 5

1.2 The Name.. 6

1.3 What does Niente do?... 6

2.0 Prerequisites for running Niente.. 9

2.1 Niente and the Axioms of Classical Tagging...9

3.0 Installing Niente.. 10

4.0 Niente – First Run.. 11

5.0 The Niente Workflow... 12

6.0 The Niente Main Program Display... 13

7.0 The Niente Database.. 14

7.1 Creating a Database.. 14

7.2 Refreshing a Database... 16

7.3 Table Structures and Methodology... 16

7.4 Schema Description.. 17

7.5 Accessing the Database... 17

7.6 Backing up the Database.. 18

8.0 Run-Time Parameters.. 19

8.1 Initialization Parameters.. 19

8.1.1 Createdb.. 20

8.1.2. Refreshdb... 20

8.1.3 Musicdir.. 21

8.1.4 Checkver... 22

8.1.5 License/Licence... 22

8.2 Routine Parameters... 23

8.2.1 Displaycolour/Displaycolor... 23

8.2.2 Dbname... 25

8.2.3 Checkdays... 25

8.2.4 Integritycheck.. 26

8.2.5 Force.. 27

8.3 Reporting Parameters... 28

8.3.1 Report.. 28

8.3.2 Report-type.. 28

Niente User Manual v1.0 Page 3

9.0 Example Reports... 30

9.1 A Date Mismatch... 30

9.2 A Misleading Date Report.. 31

9.3 A Performer Problem.. 33

9.4 A Second Performer Problem.. 34

Appendix A: Differences between Niente and AFC..35

Appendix B: The Requirement for Sudo Privileges...35

Acknowledgements... 38

Niente User Manual v1.0 Page 4

1.0 Introducing Niente
Niente is a FLAC integrity checker, useful for those with large digital music collections to manage and
curate.

It is simple to operate and completely non-destructive to the music files it catalogues and examines.
The results of its examinations are written only to a database, for later reporting. At no time does
Niente attempt to fix up any of the problems it detects: it leaves that to you, who knows your music
collection and the way it should be organised the best.

Niente can do differential integrity checks (i.e., “Only check the files that I haven’t checked within the
past 30 days”), or it can do full checks (i.e., “Check everything, no matter how recently it might
previously have been checked”).

Three different sorts of integrity report can be produced, either as text files or displayed on-screen:

• audio stream validity

• recording year consistency

• performer name consistency

The first of these is a measure of physical integrity of the file: has the audio data changed since the file
was first produced as a FLAC. The other two are measures of logical integrity: when you were tagging
up your music files, did you tag things consistently in the first place? If the first report lists anything at
all, you will probably need to restore from a good backup or re-rip the file from CD afresh. If the other
two reports list anything, you can fix up your existing FLACs with a little bit of re-tagging effort.

I wouldn’t say Niente does anything particularly revolutionary -but it does put you in full curatorial
control of your own music collection, which is no bad thing!

1.1 Some Prior History
I wrote an earlier FLAC integrity checker, called the Absolutely Baching Flac Checker (or AFC for
short) in 2019. It had exactly the same goals as Niente: to check the physical and logical integrity of my
music collection.

It fulfilled that goal for quite a long time -but at a cost. AFC wrote the results of its check out to text log
files, which was fine, though cumbersome to read after the event. But it also modified the FLAC files
themselves to ‘stamp’ them with the date of their last integrity check.

Modifying the thing whose integrity you purport to vouch for is, frankly, a bit of a no-no! I should
never have really put up with that ‘feature’, but it seemed a reasonable price to pay for peace of mind, so
I ran with it.

Unfortunately, writing to files you care about has consequences: in this case, those files now looked
‘new’ to my differential file backup routines. That wasn’t particularly a problem when it merely
triggered a fresh backup from my PC’s hard disk to my NAS Server’s hard disk array in the loft. A few
hours’ disk and network activity each night is not exactly a struggle.

Niente User Manual v1.0 Page 5

But I’ve recently begun uploading a backup of my NAS to a cloud storage service: and having my entire
music collection require re-transferring up to the cloud, when my upload Internet connection runs at
around 10Mbps on a good day… that’s definitely not a great idea! It basically means my entire upload
bandwidth is going to be permanently in use by a single program, which is not ideal!

Thus, the idea of replicating AFC’s core functionality, but without the integrity checks causing the
music files to be altered in any way, and thus not triggering a cascade of differential backups… that
sounded like a good idea! And thus Niente was written to replace AFC, and do its work fundamentally
better and less disruptively.

1.2 The Name
If you are a classical music fan, you will already know that niente means ‘a gradual dying away of
volume until only a bare whisper can be heard’. Reasonable people might wonder the relevance of such
a name to a FLAC integrity checker!

Well: the idea is that Niente gets out of your way, makes no alteration to your music files, disappears
into the background, makes itself barely noticeable.

It’s why the ‘mascot’ for the program is the Cheshire Cat, a carving
of which is to be found high up in the ceiling of Christ Church
Cathedral, Oxford ...where Lewis Carroll was once a Mathematical
Lecturer (and which you can see at the left).

The Cheshire Cat was famous for gradually fading away to
nothingness, leaving behind nothing but his smile… and the idea is
that Niente will similarly fade away into the background, leaving
you with a faint smile of satisfaction that you know your music
collection is physically uncorrupted and logically consistent.

You will need to get used to the Cheshire Cat in all his guises, as he
will be used relentlessly to represent this fundamental idea underpinning the program’s design and
purpose!

1.3 What does Niente do?
When FLAC files are first created, the FLAC encoder will compute a ‘hash value’ for the audio signal
component of the file. Think of a hash value as being like a ‘checksum’: a value which represents the
result of performing assorted mathematical computations against an input. Importantly, the input in
this case is only the audio signal component of the file: you can change the album art all you like; tag
the thing with various versions of the composer’s name or the performers involved… all such alteration
of the non-musical parts of a FLAC will not alter the content of the audio signal component.
Accordingly, the hash value computed from that audio signal should be invariant over time.

Unfortunately, files can suffer from ‘bit rot’ over time: they might be read incorrectly from disk (one
tiny flaw in the magnetic materials involved might do it, for example), and then written back to disk -

Niente User Manual v1.0 Page 6

now with a tiny flaw in its internal data. Or cosmic rays can affect data at rest on the hard disk
(honestly: it happens!)… and so on and so forth.

So, whilst it should be possible to re-read the audio signal in a file, recompute the hash value and come
up with precisely the same answer as the FLAC encoder originally calculated… sometimes (rarely, but
definitely with a non-zero probability) the freshly-computed hash value for the audio signal won’t
match the one originally computed by the FLAC encoder at the time of the file’s creation.

When such a mismatch happens, it means the audio signal has, for whatever reason, become internally
corrupt. Sometimes, you’ll be able to hear this corruption -as an audible ‘click’ or ‘jitter’ on the music
as its being played. Sometimes, the corruption might mean the file becomes completely unplayable. But
more often, the corruption will not be detectable by your ears and will lie there quietly, perhaps getting
worse over time.

Niente spots these corruptions, however inaudible they might be, by re-computing the audio signal’s
hash value and comparing it to the original one the file’s encoder wrote into the file at the time of its
creation. A single bit-flip will make the two hash values wildly different and a simple textual
comparison of the two will tell you which files have internal problems.

There’s no simple fix for corruption when its detected, by the way: you either have to restore the file
from a known-good backup, if you have one (which you should!). Or, you have to rip the file from its
original CD once more and obtain a fresh, good copy with which to replace the damaged original.

Niente will compute hash values for you and use them to detect audio signal corruption, in other words;
but it cannot fix such corruption when it finds it. That’s entirely down to you!

Niente also does a couple of other checks whose usefulness depends on how you tag your FLAC files. If
you follow my Axioms of Classical Tagging, for example (see https://absolutelybaching.com/music-
articles/the-axioms-of-classical-music-tagging/), then you will:

• store the recording year in the ALBUM tag

• store the recording year in the DATE tag

• store the performers of the recording in the COMMENT tag

• store the principal or ‘distinguishing’ performer in the PERFORMER tag

For example, the Solti recording of Wagner’s Das Rheingold would, under my axioms, be catalogued as:

• ALBUM=Das Rheingold (Solti - 1958)

• DATE=1958

• COMMENT=Georg Solti, Vienna Philharmonic Orchestra, Oda Balsborg (Woglinde), Hetty
Plümacher (Wellgunde), Ira Malaniuk (Flosshilde), Gustav Niedlinger (Alberich), George
London (Wotan), Kirsten Flagstad (Fricka), Claire Watson (Freia), Walter Kreppel (Fasolt),
Kurt Böhme (Faffner), Ebergard Wächter (Donner), Waldemar Kmentt (Froh), Set Svanholm
(Loge), Paul Kuen (Mime0, Jean Madeira (Erda)

and

• PERFORMER=Georg Solti

Niente User Manual v1.0 Page 7

https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-tagging/
https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-tagging/

There are good reasons for tagging things this way, which I needn’t get into now -but the problem is
that we now have duplicated data about the place… and no mechanism by which we can ensure that the
data that appears in the second place is ‘in synch’ with the same data as it appears elsewhere.

The ‘1958’ in the ALBUM tag needs to match the ‘1958’ in the DATE one, for example; and the ‘Georg
Solti’ in the PERFORMER tag needs to match something (usually, but not invariably, at the beginning)
in the COMMENT tag. There are no automatic ways of ensuring this level of logical data consistency,
but Niente will at least check all these tags and make sure that they make sense -and produce reports
identifying any digital files which ‘break the consistency rules’ in one or more ways.

Summing up, then: Niente will check for physical corruption within a FLAC file; it will also check for
logical inconsistencies in the way you have tagged up your music files when first cataloguing them.

It is possible that you have devised your own way of tagging your music files, where the logical
consistency checks Niente performs would not make sense. That’s fine too: you don’t have to produce
the reports about logical inconsistencies if you don’t need them. But everyone can at least take
advantage of Niente’s ability to check for the physical degradation of FLAC files.

Niente User Manual v1.0 Page 8

2.0 Prerequisites for running Niente
There are some obvious things you need to do before you can
successfully run Niente to check your music files. You must, for
example, be using Linux. You also need to be able to run sudo
commands when needed (describing how to achieve that on
various distros is discussed in Appendix B of this document).

You must also store your digital music files in the lossless FLAC
format: Niente can only check FLAC files and will not (by
design!) even see any APE, WAV, MP3, OGG or any other
digital music format.

There are some more specific software prerequisites too: you’ll be
told about them when you first try to run Niente on a system

where they have not been installed previously. Probably the most important component is ffmpeg,
which is available for all Linux distros (but may require some finagling to install on some distros, such
as openSUSE and Fedora, which seem to think it might be patent encumbered and thus don’t include it
by default in their ‘standard’ repositories). In any case, as I say, the program itself will warn you about
necessary software dependencies when it is first run.

2.1 Niente and the Axioms of Classical Tagging
The check for physical internal integrity that Niente performs on FLAC files can be exploited no
matter the state of your digital music collection: a FLAC’s a FLAC, no matter how careless tossed onto
a file system it might be!

But the logical checks on your FLAC tags that Niente performs will only make sense if you are
cataloguing and tagging your files in the way I describe in my article on the ‘Axioms of Classical Music
Tagging’, available at https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-
tagging/. That outlines and explains in detail how you should tag your classical music files -and why.

In particular, Axioms 3 (governing what goes into the COMMENT tag), Axiom 5 (describing the need
for an ‘extended album name’ to be stored in the ALBUM tag, Axiom 6 (what the PERFORMER tag is
for) and Axiom 7 (guidelines for how to use the DATE [or YEAR] tag) need to be followed for Niente’s
logical checks to make any sense at all.

If you do not personally agree or follow those axioms, that’s fine: Niente is, as I say, still of use for the
physical integrity checks it performs; and there’s no requirement for you to ever see the results of the
logical checks it does that are of no interest to you.

I would recommend the Axioms as good guidelines to follow for an excellently-curated classical music
collection, though, because they describe a coherent and highly functional way of doing the job. But
Niente will still be of value to you, even if you’re not collecting classical music, let alone whether you
agree with my particular tagging recommendations if you are!

Niente User Manual v1.0 Page 9

https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-tagging/
https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-tagging/

3.0 Installing Niente
To install Niente on your Linux system, simply type these commands at a terminal prompt:

 cd

 wget https://absolutelybaching.com/abc_installer

 bash abc_installer --niente

The cd makes sure what is about to happen takes place in your own home folder. The wget command
fetches the Absolutely Baching Installer script (and obviously needs to have been installed before you
start: it’s present by default on most Linux distros with which I’m familiar, though, so should generally
work ‘out of the box’. The bash command then runs that script.

The installer script will fetch the Niente software from the Absolutely Baching website and will copy it
into the appropriate folders for you. Since root permissions are needed to do this copying, the script
will prompt you to supply your sudo password at one point: you do need to be able to run with root
permissions via sudo for the installation to succeed.

An optional step is now to make sure that your terminal of choice always opens with dimensions of at
least 102x26. Most distros seem to default their terminals to opening at 80x24, and this will result in
garbled output from Niente. So you should alter the ‘profile’ governing a terminal’s default size. On
Konsole, that’s Settings → Edit Current Profile, but you also need to do Settings → Configure Konsole and
turn off the ‘Remember window size’ option, so that the new profile values take effect. In Gnome, it’s
just click the terminal’s ‘hamburger menu’ (three horizontal lines, up in the top left), then click
Preferences. The default profile is named under the ‘Profiles’ item on the left, and can be altered there.

I say that it’s an optional thing to change your terminal size in that Niente will work perfectly well
without you doing it: but it is written to expect a 102x26 window and will be mostly unreadable
garbage if you don’t accommodate it in this way!

So, with the software installed and your terminal configured to be the ‘right’ size, you can run Niente
for the first time by typing the simple command:

niente

It is quite likely that at its first run, Niente will simply display a message saying that you’re missing
some software prerequisites. Once you’ve installed them, though, then running Niente with this most
basic of commands will prompt the program into doing not much more than displaying some very
high-level and simplistic help on the sort of command-line parameters you can add to the command to
get it to do meaningful work. Mastering those command-line parameters is how you get Niente to do
serious, productive work for you, as we’ll see.

Let me now walk you through the ‘first run’ of Niente in a bit more detail, with some screenshots!

Niente User Manual v1.0 Page 10

4.0 Niente – First Run
When first run, Niente will scan your system for the presence (or absence!) of necessary software
prerequisites. If it finds any software missing, it will prompt you to install it, and then quit. You can
then install the software using the command it suggests (or via any other software installation
mechanism with which you are more comfortable), and then re-run Niente, until it declares itself
happy with the software environment it finds itself in.

Here’s a worked example on a freshly-installed (and totally default) Ubuntu 20.04.2 system:

You should be able to make out that the program has determined that, on this occasion, a single piece
of ‘missing’ software has been detected: in this case, ffmpeg.

Notice that Niente is ‘distro-aware’: it knows it’s being run on Ubuntu, so it’s suggesting a sudo apt
install command to get the required software installed. On openSUSE, it would provide a zypper
command; on Fedora a dnf one, and so on. Niente has been tested on all major distros (anything in
the top 10 of Distrowatch, basically), so it should get most of them right, but if it is being run on
something out of the ordinary, it may not entirely understand how to install required packages -in
which case, it’s down to you to understand your choice of distro’s package management processes!

Anyway: clearly, this particular distro needs me to install some extra software, so let me run the
command shown and then re-run Niente afterwards:

Niente User Manual v1.0 Page 11

https://distrowatch.com/

Well: it’s certainly a different response -but it frankly isn’t very exciting! It’s telling you some of the
‘run-time parameters’ you can supply to the program, which will actually make it do useful things.
These are all detailed at great length under Section 8 of this document.

But leave those aside for now: the point is that Niente has been installed, its software dependencies
have been met, and it’s able to run. That’s progress, at least!

5.0 The Niente Workflow
To do anything productive with Niente, you have to do four main things
in sequence:

• Create a database (you only do this once)

• Populate the database with details of what music files you have
(called “refreshing the database”)

• Scan your music files (called ‘doing an integrity check’)

• Report on the results of the integrity check

As mentioned, you only create a database once (though there’s nothing to stop you deleting it and
creating it again; or creating lots of different databases to record different parts of your music
collection -if, say, your classical music is stored somewhere distinctively different from your non-
classical stuff and you want to keep their integrity checks distinct from each other).

The database creation automatically triggers an initial ‘refresh’ operation -whereby the programs scans
your music files and stores details of every one of them into the database. Only after this ‘refresh’ does
the database accurately record what music you own. Inevitably, therefore, though you get a ‘free’
refresh as part of the database creation process, you’ll want to re-refresh every time your music
collection changes. If you acquire new music, or dispose of unwanted works, or correct the tags in this
file or re-rip that one... then a database refresh will keep Niente aware of what you’ve been doing to
your music collection. You might consider scheduling (via cron) Niente to run a database refresh every
night, for example, so that it captures that day’s acquisitions and cataloguing activity. A refresh of the
database for my 1.7TB music collection (which stores about 15,000 different recordings of works, and
which I consider to be relatively big) only takes around half an hour, so it’s not a big deal to refresh
quite often.

The real heavy lifting takes place during Niente’s performing of an integrity check. During this phase of
activity, which is not automatically triggered but always has to be manually invoked, Niente reads its
database of what music files exist. It visits each one in turn and captures some of its tag data and,
perhaps most importantly, reads the audio signal from beginning to end and calculates a hash value for
it -a sort-of checksum that is that music signal’s digital ‘fingerprint’. It’s this bit that takes quite a lot of
effort and time: on my 1.7TB music collection, an integrity check of all of it takes around 7 hours to
complete.

An integrity check is therefore something you want to happen frequently, so that you can spot physical
corruption of your music files as soon as possible and before too much damage has a chance to

Niente User Manual v1.0 Page 12

propagate too far. It’s also something you don’t want to perform too frequently, though, because it takes
ages and gives your CPU and hard disk(s) a bit of a hard time! As we’ll go on to discuss, therefore,
you’ll have to find a balance: a way of running Niente often enough to be useful, but not in a way that
your entire music collection is hammered every time!

Anyway: once you’ve run an integrity check, the results of it are written back to the database.

Only at this point can the useful fourth step of the Niente workflow be performed: reporting on what
Niente has discovered. There are various reporting options (as we’ll see: Section 8.3) and it’s entirely
up to you how and when you take them. Every time you do, however, Niente simply reads from its own
database to determine what records should be displayed on which reports. Niente doesn’t need to re-
scan anything to produce a report, in short, so report production is always quick and easy.

Always bear in mind that you can generate reports at any time -but if you haven’t recently refreshed
your database, you’ll be reporting on a ‘set’ of FLAC files that once existed in that state, but might not
do so any longer. Similarly, if you report without doing a fresh integrity check, the reports produced
will tell you how well your music collection used to pass its checks. It won’t tell you what the current
state of your music collection is.

Accordingly, once you’ve created your database, get into a routine of: refresh, check, report. Only in
that context will the checks be made on the current state of your music collection, and only then can
the reports tells you your current passes and failures.

6.0 The Niente Main Program Display
To be honest, there’s not a lot to look at when Niente is running any of the four main steps of its
workflow!

Here’s what it looks like when it’s running an integrity check, for example:

It simply tells you what database it’s using (in the third ‘title’ line, in blue).

It then tells you what folder it’s either been invoked from -or, as in this case, what folder it’s currently
scanning to find music files to check. That’s always in yellow, and as it changes, you get a sense of
whereabouts in your collection it’s got to in its work. In my case, it’s got to ‘Francis Poulenc’, so I know
that whilst it’s checked all my Benjamin Britten, it hasn’t even started on the Johann Sebastian Bach!
It’s going to be quite a while working, therefore…!

Niente User Manual v1.0 Page 13

In general, anything you see in green is ‘static text’: labels, program names, copyright notices and so on.

Anything in blue is ‘fairly static text that varies a bit depending on user input’. The database name
appears in blue, for example, because it varies, depending on what database you say you want to work
with. The fact the program is ‘scanning for internal details’ is also not-quite-static: what the program
does depends on what you asked it to do, so it appears in blue.

Anything yellow is quite dynamic text: usually progress indicators of some sort (such as the folder
names shown here), constantly changing as the program does it’s work.

If you see anything in red, it’s an error or a warning of some kind.

7.0 The Niente Database
Niente cannot do anything meaningful without storing
data in a database that you get it to create.

• That database has to be created with the
--createdb run-time parameter.

• It is then kept up-to-date with changes in your
music collection with the --refreshdb
parameter.

• It is thereafter used by Niente any time the
program is run with the --dbname parameter.

It’s important to realise that creating a database doesn’t
mean moving your physical music files anywhere or

altering them in any way. The database is a store of information as to where, on disk, your music files
can be found: it does not contain the music files themselves. Accordingly, the database is small and
compact, even after a very large music collection has been scanned: my 1.7TB music collection is
represented by a Niente database that is only 6MB big, for example.

The Niente database is a sqlite3 one (not MySQL, in case anyone was wondering). Sqlite3 is an open
source, compact, highly portable and reasonably-performant relational database.

7.1 Creating a Database
To create a database in the first place, you must run Niente with the following style of command;

niente --createdb --dbname=mymusic --musicdir=/path/to/root/of/music-collection

The --createdb parameter is simply the instruction to create a database: the detail as to what that
database’s name should be is provided by the --dbname parameter, which must therefore be present.
The --musicdir parameter must also be present, so Niente knows where to find your music collection
and thus what the source of its database’s records should be.

If you fail to supply a --dbname parameter then you’ll receive a warning that a ‘no-name’ database
cannot exist:

Niente User Manual v1.0 Page 14

If the database name you supply already exists, you’ll again be warned about this and told that no
database creation is possible and that you should probably instead be trying to ‘refresh’ the database
which already exists.

If you attempt to create a database without a --musicdir parameter to tell it where the music files it’s
supposed to check can be found, then yet another warning in red will appear telling you to remember
to supply it.

You need all three parameters when creating a database, in short: there are no defaults and without
every one of them spelled out, further progress is impossible.

There is no limit to the number of databases you can create, though they must each be uniquely named.
If you had classical and jazz music collections, for example, and wished to keep them distinct, you
could do two ‘createdb’ runs, naming each database something like ‘classical’ and ‘jazz’, and you’d
thereafter be able to scan and check each type of music distinctly with different runs of Niente using
different --dbname parameters.

The musicdir parameter should point to the ‘root’ of your folder tree within which your digital music
collection can be found. There is no practical limit to the ‘folder depth’ that Niente will descend to in
order to find FLAC files. In my own case, for example, one of my Beethoven symphonies can be found
in the following folder:

/music/classical/L/Ludwig van Beethoven/Symphonic/Jochum (LSO) Cycle/Symphony No. 3 (Jochum - 1976)/

...so you can see that’s quite a few folders ‘deep’: but the root of all my music is simply:

 /music/classical

...and that’s the folder I’d add as the value for the --musicdir parameter, and the symphony will be
‘discovered’ within that path perfectly well.

Should your desired musicdir path contain spaces, please wrap the entire thing in double quotation
marks. For example:

niente --createdb=music --musicdir=”/my music/classical music”

Ideally, you wouldn’t have spaces in the ‘root’ of your music folder path like that, but if you insist on it,
Niente can at least deal with it, double quotes permitting.

Once Niente creates a database, it sets about populating it by performing an automatic ‘refresh
database’. What it does during this process is also what happens when you subsequently perform
manual refreshes of the database… so let’s examine that process now.

Niente User Manual v1.0 Page 15

7.2 Refreshing a Database
If your music collection is very static, you may never need to refresh the Niente database -but if you
acquire new recordings over time, or alter the metadata or physical file/folder names associated with
existing ones, then you need to keep the Niente database ‘in synch’ with the evolving state of your
music collection by means of performing a database refresh.

In a database refresh, the contents of the existing main database table are preserved, but new music
files are added as new rows to it and any music files which are detected as no longer existing have their
corresponding table row(s) deleted. The refresh process is therefore generally quite quick: most
existing rows won’t need altering at all, and the program simply checks the files they describe still exist.
Very little data is collected for any files new to the database, too: the physical folder they’re found in is
about it. So even the initial scan of a huge music collection won’t take too long.

Since a database refresh closely resembles a database (re)creation, the command syntax for performing
one is very similar to the way you create a database in the first place:

niente --refreshdb --musicdir=/path/to/root/of/music-collection

There is no hard-and-fast rule about how often to refresh your database: as mentioned, it really
depends on how ‘dynamic’ your music collection is. If you are acquiring half a dozen new recordings a
week, say, then maybe a weekly refresh might be in order; if it’s half a dozen a day, then maybe nightly
refreshes are a better fit. Personally, I schedule a nightly refresh at 2AM in my crontab file with the
following entry:

Refresh the main Niente database nightly at 2AM

--

0 2 * * * /usr/bin/niente.sh --refreshdb --dbname=main --musicdir=/sourcedata/music/classical

Remember to use the full path to the Niente script (i.e., /usr/bin/niente.sh) in crontab, rather than
relying on just ‘niente’, as that requires a PATH variable to work, and PATHs are seldom set correctly
in the context of a crontab job.

7.3 Table Structures and Methodology
In normal use, you do not need to know, nor care, about the inner structures of the Niente database -
though if you want to construct your own SQL reports and analyses of your music collection,
understanding its tables and their contents may be helpful. If you are not skilled in the ways of SQL,
however, you can ignore the next few pages: skip to ‘Accessing the Database’ further on!

The Niente database, when created, contains just two tables, as follows:

• tracks: populated after the music collection is scanned as part of a createdb or a refreshdb
operation. One row represents a single, unique FLAC file, with details of it’s location on disk
and its file name. Various other attributes (such as whether it’s a 16-bit FLAC or a hi-res 24-bit
one) are also collected, to help with subsequent integrity checking

• sqlite_sequence: an internal table that records the unique ID numbers given out to tracks when
those tables are populated

Niente User Manual v1.0 Page 16

The TRACKS table has a synthetic primary key (on the ID column) and this column is therefore
indexed.

7.4 Schema Description
The following screen captures attempt to show the entire minimalist Niente schema (the database
name will depend on what parameter is supplied to the --createdb=xxxx parameter).

TRACKS

INDEXES

A textual representation of the schema is available from within the sqlite command line shell, which
can be accessed from a terminal session with the following commands (which assume the database is
named “main”, and thus exists as a file called main.db within the standard Niente folder):

cd $HOME/.local/share/niente
sqlite3
.open main.db
.tables
.indexes
.schema
.quit

(It is the .schema command that will display the SQL code needed to re-create the schema completely)

7.5 Accessing the Database
The Niente database is not intended to be directly accessed. The reports that Niente produces from it
can be accessed by using the --report runtime parameter instead, for example.

However, since the Niente database is a standard Sqlite3 database, it can be queried at any time using
standard (and free/open source) tools such as the DB Browser for Sqlite.

The standard Sqlite3 command line shell can also be used to query the Niente database directly,
independently of Niente itself.

Do please note that though the database is configured to run in ‘Write Ahead Logging (WAL) mode’,
such that a reader shouldn’t block another reader, nor a writer a reader, if you are accessing the

Niente User Manual v1.0 Page 17

https://sqlitebrowser.org/

database at the same time as Niente is trying to record the results of a fresh ‘scan’ or ‘integrity check’
in it, unexpected results may occur. It is also generally not a good idea to perform your own inserts,
updates or deletes on any part of the Niente database using external tools: corruption to the database
may occur if you try.

7.6 Backing up the Database
Fundamentally, the Niente database merely describes your music collection. Lose it, therefore, and you
can easily re-create it by scanning your music collection afresh. There is thus no real pressing need to
back up Niente’s database at all (and I don’t bother, personally).

If you wished to do so anyway, however, then a simple copy of the $HOME/.local/share/niente
folder to a backup destination is sufficient to achieve a functional backup. Restores would simply
consist of copying that folder back from the backup device into that specific location on your PC. Note
the full-stop (‘period’) before the ‘.local’ bit of the path: that makes it hidden folder, but once you are
inside it, everything just looks and behaves normally.

Niente User Manual v1.0 Page 18

8.0 Run-Time Parameters
Niente is run, as you’ve seen, by typing the command
niente in a terminal session.

It won’t actually do anything useful, however, until you tell
it what to do by passing it ‘switches’ or ‘runtime
parameters’, which are keywords prefixed with a double-
dash (and sometimes suffixed with a value).

There are 12 possible runtime parameters: some you only
use once or rarely. Others, you’ll use repeatedly.

You can think of them as coming in three ‘groups’, which
I’ll call initialisation, routine and reporting.

I’ll list each group and discuss the subtleties of each parameter in the following pages.

8.1 Initialization Parameters
These parameters are usually only used once (or infrequently), as part of post-installation configuration
or tailoring.

--createdb Instruction to create a database. Requires
the --dbname parameter to specify the
name of the database. Also requires
--musicdir, so it knows where to scan for
music files after database creation.

The database name becomes a
physical file name. Spaces should
be avoided, unless the entire
name is wrapped in double
quotes.

--refreshdb Instruction to rescan a music collection
and add to whatever database is specified
with the accompanying --dbname
parameter. Requires --musicdir.

New or changed files are added;
existing and unchanged files are
merely checked for continued
existence.

--musicdir=xxxx Specifies the physical location of a folder
tree structure containing music (FLAC)
files. Needs xxxx to represent a full path to
the root of the collection.

Needs to be present when
creating a new database and
when refreshing the database and
any time a report is produced.

--checkver Instruction to check to see if a newer
version of Niente has been released and to
fetch and install it if one is found.

Will prompt for sudo privileges if
a new version is found (as sudo is
required to copy relevant files to
privileged directories).

--licence / --license Instruction to display the GPL v2 text
under which Niente is licensed.

US and British spelling variants
both work the same

Niente User Manual v1.0 Page 19

These ‘initialization parameters’ tend to be used only once -or, at least, very infrequently. Usually, you’d
use them immediately after a fresh installation of Niente, because they setup and configure things
which enable much of Niente’s functionality. In the sections that follow, I remove the leading ‘--’
before the parameter name for aesthetic reasons: the double-dash is needed when actually using the
parameters, though!

8.1.1 Createdb
This parameter triggers the creation of a Sqlite3 database, with a name that matches the value you also
supply with the --dbname parameter . You can’t use --createdb without also mentioning --dbname. The
database that gets created is a single file stored in the $HOME/.local/share/niente folder with a name
identical to the --dbname parameter value. It contains pretty much a single table, which lists the full
path and file name of every FLAC file that Niente goes on to discover. See Section 7 for more details on
this internal database structure.

The --createdb parameter always has to be used in combination with the --musicdir parameter. That’s
because immediately after creating the database file, Niente scans the musicdir provided to populate it
with data. If it doesn’t know where to scan, because you didn’t mention a musicdir, database creation
will fail, with an appropriate error message displayed. The full database creation command would
therefore be something like:

niente --createdb --dbname=music --musicdir=/music/classical

This will create a database file called $HOME/.local/share/niente/music.db and then scan the entire
contents of the /music/classical folder to populate that new database.

Note that you can create as many databases with Niente as you like. If you have classical, jazz and ‘not
very good’ music in distinct folder hierarchies, for example, you can easily create three different
databases called (perhaps) ‘classical’, ‘jazz’ and ‘overflow’. You can later choose which database to use
for reporting or doing integrity checks by subsequently running Niente with a particular value for the
--dbname parameter (as we’ll see shortly).

8.1.2. Refreshdb
A static music collection may be scanned just the once, as part of the createdb process, and need never
be scanned again: it’s static, after all, and thus not changing, so the snapshot of it taken at database
creation time is a true picture of that collection.

If , however, you are still acquiring new music to add to your collection, this one-off ‘snapshot scan’ of a
folder structure at database creation time will not meet your needs: if the collection is changing, the
database contents need to be periodically refreshed to make it keep up with those changes, which is
why you’d use the --refresh database parameter in a command such as:

niente --refreshdb --dbname=music --musicdir=/music/classical

This triggers Niente to take a fresh look at the contents of the folders contained within the folder again
specified by the --musicdir parameter value. Note we need to know which database to refresh: the
--dbname parameter is therefore required to provide this vital information.

Niente User Manual v1.0 Page 20

The existing contents of the database are not wiped by a refresh operation. However, every file already
listed in the database will be checked for its continued existence: if Niente can’t find it in the place it
was previously said to exist, it will delete that row from the database. On the other hand, if it comes
across a new FLAC file as it scans the --musicdir folder structure, it will add the details of that file into
the database.

This means that the list of files in the database won’t always be ordered ‘correctly’: everything is
initially loaded in A→Z order, but if you added a new Britten opera to your music collection and then
did a --refreshdb, you’d find the new Britten tracks get inserted into the database table at the end ...so
they would come after the ‘Z’ entries. This isn’t a problem, however: you need never know or worry
about the order of rows inside the database table: Niente handles all that for you.

A refresh of the database is a relatively ‘light’ operation: it involves some disk activity as the musicdir
is scanned, but there is no deep reading of the audio signal of any file found, nor is any complicated
mathematical calculation to generate digital ‘fingerprints’ of files undertaken. Accordingly, you can
expect a 2TB music collection to be re-scanned in maybe less than half-an-hour, given a CPU
manufactured in the last 15 years. Your PC’s RAM will not be overwhelmed, either: you will barely
notice any impact on memory consumption as the scan proceeds.

Accordingly, if you are regularly adding to your music collection, or correcting its file names or tag
entries, you may want to schedule a routine refresh via your crontab. Here’s my crontab entry, for
example:

Refresh the main Niente database nightly at 4AM every day bar Sunday
--
0 3 * * MON-SAT /usr/bin/niente.sh --refreshdb --dbname=main --musicdir=/music/classical

Remember that in crontab, one tends to specify the full path to executables, so here it’s
/usr/bin/niente.sh, not just ‘niente’. You can see that I refresh my database nightly at 3AM, when no-
one’s around to see it happen, every day of the week except Sunday. I skip the refresh on Sundays,
because Sundays are my days for doing integrity checks (see Section 8.2.4 below).

8.1.3 Musicdir
As already mentioned, this parameter takes a value of the full path to the root of a folder tree
containing a set of FLAC files. It is required for database creation and refreshes.

In case it’s not obvious, you can only specify one music folder when creating or refreshing a database, so
the path supplied must be ‘high up enough’ to allow the collection scan to capture all appropriate
music in one pass.

If you had a folder structure like this, for example:

/Benjamin Britten

/Classical Music/Beethoven

/Gustav Mahler

Niente User Manual v1.0 Page 21

...it would be difficult to have all three composers included in one database unless you said your
musicdir was ‘/’ (the root folder)… and a scan of your system’s root folder is likely to be long and
painful!

Better would be something like this:

/music/Benjamin Britten

/music/Classical Music/Beethoven

/music/Gustav Mahler

...for now you can scan ‘/music’ and get all three composers collected in one hit. It doesn’t matter for
these purposes that Beethoven is one folder further ‘down’ than the other two: Niente will find music
within a top-level folder no matter how far down the ‘tree’ it might be. There are aesthetic reasons for
wanting a consistent folder hierarchy and structure, but core FLAC file discovery is not affected by
such questions of aesthetics!

8.1.4 Checkver
The --checkver parameter is something you will want to run infrequently, but regularly (say, once a
week or once a month). The command:

niente --checkver

...simply forces Niente to check the Internet to see if a more recent version of the program available. If
there is, Niente will offer to fetch and install it for you. If there isn’t, it will simply say ‘you’re already
running the latest version’.

Should a more recent version be discovered, you will be asked whether you want it fetched and
installed. If you agree to do so, you will be prompted to supply your sudo password (because installing
Niente involves writing into the /usr/bin folder, which ordinary users cannot do, but which root can).
The upgrade will always overwrite the program files involved, but will never alter in any way the
contents of your music database. Niente upgrades are therefore quite safe. It is important to perform
this version check reasonably often, because new software releases fixing bugs and adding new
functionality are being continuously made, with no fixed schedule.

8.1.5 License/Licence
This parameter can be spelled in either way, depending on whether you prefer American or British
English spelling! In either case, if you run Niente with this parameter present, the full text of the GPL
v. 2 license is downloaded and displayed within the less program (meaning that you can up- and down-
arrow or PgUp/PgDn to scroll your way through it in either direction). Press ‘q’ to quit the display and
exit back to the command line. The parameter has no real utility, other than to conveniently display
the full text of the license under which Niente is made available. It’s not an option you’re going to use
very often, I think!

Niente User Manual v1.0 Page 22

8.2 Routine Parameters
These parameters tend to affect the way the program looks or behaves and are accordingly parameters
you will want to specify frequently (or at least, some of them!).

--displaycolour=xxxx
--displaycolor=xxx

Valid values are light, dark, neutral,
standard

Alters the colour display of the text. The
default is ‘standard’

--dbname=xxxx The database name you want to create,
refresh, use as a source of file
information for an integrity check, or
report from.

Must be present when various other
parameters are used, so we know what
database to use to store data in or read
data from.

--checkdays=y The number of days old a record has to
be to be a candidate for normal
integrity re-checking

The default is 27. Non-numeric values of
y, or values less than 1, are converted to
the default 27 days. Files checked within
this number of days won’t ordinarily be
selected for a re-check.

--integritycheck An instruction to perform a detailed
integrity check on candidate FLAC
files referenced by the database.

An integrity check performs a detailed
analysis of the audio signal within a
FLAC file and creates a digital
‘fingerprint’ for the file (which hopefully
matches the one created when the file
was first created).

--force An override for the
--checkdays parameter: forces all
database records to be subject to an
integrity check, regardless of when the
last one was performed.

8.2.1 Displaycolour/Displaycolor
However it’s spelled, this parameter takes one of four possible values, with ‘standard’ being the default.
Any value passed that isn’t ‘light’, ‘dark’ or ‘neutral’ is silently interpreted as ‘standard’.

The standard colour scheme involves the use of blue, green, red and yellow text: users with colour
perception issues may prefer trying one of the other three values, which essentially turn the display
into monochrome white (“light”), monochrome black (“dark”) or monochrome yellow (“neutral”).

Note that the various colour schemes might not always display correctly unless you also configure the
appearance of your terminal session. If you ask Niente to display ‘dark’, for example, when your
terminal profile already mandates a dark appearance, you’ll be basically looking at black text on a black
background!

Niente User Manual v1.0 Page 23

Here are screenshots of the various colour options available to you via the use of this parameter.

First, standard:

Broadly speaking, the standard display uses Green to display static program text; Yellow to display
dynamic text whose content will depend (maybe indirectly) on something the user supplied; Red to
display error messages or alert condition warnings; and Blue to display static text that depends on user
input (such as the name of the database in use).

Now, Light:

Everything becomes white monochrome text, basically, so that there’s no difference between program
text, user information and error messages.

Now Dark: contents of the database are not wiped by a refresh operation. However, every file already
listed in the database will be checked for its continued existence: if Niente can’t find it in the place it
was previously said to exist, it will delete that row from the database. On the other hand, if it comes
across a new FLAC file as it scans the --musicdir folder structure, it will add the details of that file into
the database.

Niente User Manual v1.0 Page 24

Here, I’ve altered the terminal theme to be ‘Tango Light’… and now you can see that the dark Niente
theme results in monochrome black text on a now-white background.

Finally, here’s Neutral:

As you can see, this is essentially monochrome yellow -the idea being that yellow-on-black is less tiring
on the eyes than plain black-on-white or white-on-black.

8.2.2 Dbname
Almost any time you run Niente, you’ll have to mention the --dbname parameter. It tells Niente where
the ‘source of information’ about the FLAC files it’s supposed to check can be found. It also tells Niente
where to store the results of its scans of your FLAC files. Without it, Niente hasn’t got a clue where to
start scanning nor where to write the results.

Specifically, if you say --createdb, --refreshdb or --report, you must specify --dbname and the program
will error out with a suitable warning if you don’t.

Since the database name becomes a physical file name, it’s a good idea to make your database name a
simple, short, one-word value without spaces. Good names might be, for example, ‘music’ or ‘main’ or
‘overflow’. A bad name might be something like ‘My main database’, because all those spaces might
cause trouble further down the line. If you insist on using spaces within a database name, you’ll have to
wrap the entire parameter within double quotation marks, so you’d have to end up saying something
like --createdb=”My Main Music Database”.

I would recommend not using capital letters either: Linux filesystems are case-sensitive, so if you mix
cases in the database names, you’ll always have to remember the precise combination of upper- and
lower-case letters for all future uses. Sticking to one-word, lower-case database names makes life easier
all round!

For the same ‘it becomes a file name’ reason, avoid characters which your file system would reject as
illegal or which have significance for the file system: so avoid asterisks and forward slashes, to name
but two!

8.2.3 Checkdays
When you perform an integrity check (see below, Section 8.2.4), Niente’s standard operating procedure
is to read from its database and find files there which have a ‘last checked date’ that is at least 27 days
before ‘now’. It takes the view that there is not a lot of point in doing heavy-duty integrity checks of
files which were only checked a day or two ago, for example.

Niente User Manual v1.0 Page 25

The --checkdays parameter must be given a numeric value, greater than 1. There is no upper limit, so
--checkdays=9999 would be valid, though pretty silly!

If you supply an illegal value for the parameter (such as --checkdays=-20), the default value of ‘27 days’
kicks in silently (negative numbers are not allowed, in other words).

8.2.4 Integritycheck
This parameter is really the reason Niente exists in the first place! It’s an instruction to perform a
detailed inregrity check on the FLAC files listed in its tables. That integrity check is quite CPU and
disk-activity intensive, so it’s not something you necessarily want to be doing to your large collection of
FLAC files every few hours! It is, however, completely non-destructive: it doesn’t alter the content of
your music files at all, though it does make the files read-only as part of its processing (on the grounds
that a file which cannot be ordinarily written to is less likely to be modified in a way that corrupts its
audio signal over time).

Note that this parameter requires --dbname, but definitely does not need --musicdir: Niente doesn’t
need to be told where to scan for FLAC files, since its database tells it precisely where every FLAC it’s
ever seen during a database refresh lives on disk.

An integrity check of your entire music collection can take quite a while to complete: my 1.7TB
collection takes about 6 or 7 hours to process completely. My own crontab entry for a check of the
entire collection looks as follows:

Weekly integrity checks of the music source, every Sunday at 1AM

--

0 1 * * SUN /usr/bin/niente.sh --integritycheck --dbname=main

The computer starts early, at 1AM on every Sunday, so that if the job required re-checking every file, it
would be mostly over by the time I struggle out of bed at around 8AM!

But, of course, this won’t check everything every Sunday. On most Sundays, the last check date for most
files will be within 27 days ...and, as you’ll notice, I’m not setting --checkdays in my command, so the
default of 27 will be used. Only after 4 weeks (i.e., 28 days), therefore, will most of my files fall into the
‘checkdays net’ and actually be re-checked.

The good news is that if I acquire new CDs throughout the month (as I do), then this ‘run every night
but skip most things most times’ arrangement will mean that something I catalogue and add to the
collection on, say, Thursday will get integrity-checked just three days later. Worst case, if I add
something to my music collection on Monday, only 6 days will elapse before it gets picked up for an
integrity check.

So, it’s fine to schedule the integrity check to happen quite frequently -because, unless you say --force
(see below, Section 8.2.5), or otherwise use a very low --checkdays, hardly anything except new
acquisitions will actually get checked each time the program is run. Only every 27 days (or whatever
other --checkdays you supply) will the nightly-scheduled job suddenly have to deal real work on large
proportions of your music collection.

Niente User Manual v1.0 Page 26

The results of an integrity checked are written back to the database mentioned in the --dbname
parameter (which must therefore be present). Specifically, the ‘LAST_CHECK_DATE’ column is
updated with the current date, and the HASH_NEW column is updated with the hash value freshly
computed by re-reading the audio signal in every file checked. It is by comparing the contents of the
HASH_NEW column thus freshly computed with the contents of the HASH_ORIG column (which
contains the hash value originally stored in the file at the time of its creation) that we are able to
determine whether any FLAC file has become physically corrupted over time.

8.2.5 Force
There may be occasions when you do not want to wait for the routine integrity check scheduled in your
crontab to take place: you need a check to be performed now. You could achieve that by running Niente
with --integritycheck --checkdays=1, since that would mean ‘please check everything not previously
checked within the last day’ (which is probably going to be all your FLACs).

However: that’s not quite exact! The LAST_CHECK_DATE is always updated to the start of a day (i.e.,
you run an integrity check at 6pm on 28th June 2021: the LAST_CHECK_DATE will say the check
took place at midnight on that day (i.e., as the 27th became the 28th). That rounding is usually fine: we
tend not to worry about hours and minutes in these sorts of calculations! But it might mean that --
checkdays=1 doesn’t guarantee a re-check of everything, depending on when it’s issued and when you
ran your last integrity check.

The --force parameter removes any such ambiguity: it forces Niente to do an integrity check for every
FLAC file it knows about with absolutely no regard to when it was previously checked. It will, 100%
guaranteed, cause every file for which it stores details to be re-checked.

8.3 Reporting Parameters
The Niente database will store the facts of whether your music collection contains physical or logical
corruption -but if you don’t ask it to report on its findings, you’ll never know about them! The
reporting parameters are how you get access to that vital information:

--report=xxxx An instruction to produce a report of the
plays previously recorded within a database.
Valid values for xxxx are either a full path and
filename for a written report, or the word
‘screen’ to display the report on-screen.

Requires the --dbname
parameter, so we know what
database to report on.

--report-type=xxxx The specific integrity report or reports to
produce. Valid values for xxxx are ‘integrity’,
‘dates’, ‘performers’ or ‘all’.

The default is to only produce the
‘integrity’ report on physical
corruption.

Niente User Manual v1.0 Page 27

8.3.1 Report
The --report parameter takes two possible values: a full path and filename if you want the report that’s
about to be generated written to a text file; or the word “screen” if you want the report displayed within
the terminal session.

Note that the --dbname parameter must be present whenever --report is mentioned, because without
it, we cannot know what database you want to query to generate the report in the first place. That
database needs to be the same one you scanned when creating or refreshing the database, and the one
you use when telling Niente to perform integrity checks.

8.3.2 Report-type
Niente can produce three types of report: the physical integrity report, indicating files where the
freshly-computed hash value doesn’t match the one stored in the file at the moment of its creation; and
the two reports on logical inconsistencies between the year stored in the ALBUM and DATE tags, and
the inconsistencies that might exist between the contents of the PERFORMER and COMMENT tags.

Accordingly, the --report-type parameter takes the values ‘integrity’, ‘dates’ or ‘performers’.

A fourth value is possible should you want all three reports in one hit: ‘all’.

Depending on whether you said --report=screen or --report=/path/and/filename.txt, the contents of
the reports will either appear in your current terminal session or as plain text files in the location
specified.

If the report is directed to screen, the lines of the report will be scrollable up or down one line at a time
as the mood takes you, using your Up and Down arrow keys. You can also scroll through multiple lines
in either direction more quickly using your PgUp and PgDn keys. When you are finished reading the
report on-screen, just tap the letter ‘q’ to quit.

If you have selected the ‘all’ report type, each of the three reports will be displayed on-screen in turn.
You tap q to quit out of one and the second will be displayed automatically. Tap the letter q again to
quit out of this second report and the third will automatically display. Only on the third tap of the
letter q will that report quit: now you’ll be returned to the command line from where you requested the
reports in the first place.

If you selected a path and filename as the --report parameter value, then text files of the reports will be
written out to your chosen destination, but the word ‘integriy’, ‘dates’ and ‘performers’ will be inserted
into your specified choice of filename. That is, if you had said :

niente --report=/home/reports.txt --report-type=dates --dbname=main

...then you’d actually get a text file called /home/reports-dates.txt output. If you selected a report type
of ‘all’, then all three files are output at the same time, each with the ‘-integrity’, ‘-dates’ and ‘-
performers’ keyword insertted into their names before the .txt extension.

The reports simply list the files that have failed the various checks, and each type of report performs
two separate checks, as follows:

Niente User Manual v1.0 Page 28

1) Integrity: checks that (a) all files have been integrity checked and (b) that all files have freshly
computed hash-values which match their original values (indicating no internal corruption).

The 1(a) test is there to deal with the situation where you refresh your database (which might add new
rows into the database) but then go straight to doing a report, without remembering to first do an
integrity check. The new rows added by the refresh will be listed on the report as awaiting their first
integiry check. It’s a reminder that the work flow should always really be refresh-check-report.

Obviously the 1(b) test is the one that ‘really counts’! It’s the one that spots any rows where the original
hash value for the audio stream no longer matches the freshly-computed value. That sort of change can
only come about by the audio stream data itself being modified from the original -even if only by the
flip of a single bit. That’s the fingerprint of internal corruption and can only be fixed by restoring the
file from a backup, or re-ripping the music from the original disk.

2) Dates: checks that (a) all files have a DATE tag value of some kind and (b) that the DATE tag value
matches the year element found in the ALBUM tag, assuming that your ‘extended album names’ are
written in the form of ‘actual composition name (performer - recording-year)’. The recording year
extracted from the last few characters of the ALBUM tag should logically match the YEAR tag entry,
and this test will tell you if they don’t for some reason.

3) Performers: checks that (a) all files have a PERFORMER tag of some sort; and (b) that it matches
some part of the COMMENT tag. The assumption is that if you say a recording is performed by
‘Herbert von Karajan, Berlin Philharmonic Orchestra’ in the COMMENT tag, the PERFORMER tag
will say ‘Herbert von Karajan’. If you’d said ‘Herbert von Karajan’ in the one and only ‘Herbert Karajan’
in the other, the missing ‘von’ would trigger a report on the discrepancy.

If you do not use PERFORMER, ALBUM, DATE and COMMENT tags the way Niente expects you to,
those last two reports need never be produced and their contents needn’t bother you. However you tag,
though, the integrity report is important as it detects physical changes to the internal data making up
your audio stream, independent of what the tags in that file might or might not be. Data integrity is
something everyone needs to worry about -and is at the core of why Niente was written in the first
place.

There is always scope for adding more logical checks to Niente in the future, though they will again
depend on you adopting a particular tagging strategy. No additional logical checks are currently
planned, however.

Niente User Manual v1.0 Page 29

9.0 Example Reports
I thought I should conclude this manual with some examples of reports produced on my own, real,
music collection -and how I responded to them to make things go away. Sometimes it’s pretty obvious
what ‘the fix’ should be. Sometimes, less so!

9.1 A Date Mismatch

In this screenshot, you can see a report on Date Consistency in the background. Notice that all my
music at least has a date tag, which is something! Ten files, however, have date tags which are
inconsistent with the year recorded in the album tag. I’ve opened up the first one listed (the Scriabin)
in the Kid3 tag editor in the foreground (any tag editor would do, but this shows things nice and
clearly).

You can see that the DATE tag says ‘1995’, but the ALBUM tag says the recording was conducted by
‘Ashkenazy - 1990’: the fact that 1990 isn’t the same as 1995 is why this line was included on the report.

What was the fix in this case? Well, I simply had to make the two (actually three, since the year also
happens on this occasion to be listed in the TITLE track too, though Niente wouldn’t have spotted
that: it only compares DATE to ALBUM) years agree.

But should the DATE become 1990? Or should the ALBUM become 1995? There’s no easy way to
answer that, which is why Niente cannot fix these issues for you! In my case, it was time to dig out the
original booklet and check the recording details:

Niente User Manual v1.0 Page 30

A close reading shows that Symphony No. 3 was recorded in May 1990… so the DATE is wrong and
ALBUM right. I therefore altered the DATE tag on the original file.

Applying ‘the fix’ does NOT make the line disappear from the report, if I happened to ask for it to be
produced again. Changing your music collection does not result in an automatic change to the Niente
database. So, having updated the tags, I’d need to do a --refreshdb and a new --integritycheck to get the
contents of the report to update to reflect the new state of my music collection.

9.2 A Misleading Date Report
I thought I should show you another example of how you might think about fixing up something listed
in a report. Here’s another example from the Date report you’ve just looked at:

This is from the fourth line in the ‘inconsistent dates’ report: Ernest Bloch’s Baal-Shem. As before, I’ve
opened up the file indicated with Kid3… and am puzzled to discover that the DATE is 2008...and so is
the ALBUM year element. There’s no inconsistency there, so why is it being reported on as though
there was?

Well… take a look at the fourth line in the report at the background again. It’s listing Ernest
Block/Concerto/Baal-Shem (Sloane - 2008)/.flac.

Niente User Manual v1.0 Page 31

I spotted straight away that the file name part of that is actually missing: it just says ‘.flac’, whereas you
can see in the lower left the file name is fully-formed as Baal-Shem - Three Pictures of Chassidic Life
(Sloane - 2008).flac.

So my first thought was that Niente had been fooled into not reading the file name correctly for some
reason -and I noticed that in this file name there are two occasions where the sequence ‘space dash
space’ appears: ...Shem - Three… and ...(Sloane - 2008)… I figured that maybe the first
space/dash/space had fooled it into thinking it was the date space/dash/space, that it had therefore
triggered a mis-read, and therefore, I should replace that first ‘space/dash/space’ with something like
‘space/en-dash/space’. The en-dash is a slightly longer dash than a vanilla hyphen and uses a different
Unicode number, so it would look similar to a hyphen, but would not be programmatically read as one.

So I changed the physical file name to Baal-Shem – Three Pictures of Chassidic Life (Sloane - 2008).flac
...and if you look carefully, the hyphen between ‘Shem’ and ‘Three’ is now a bit bigger than it was
before.

After that, I refreshed my database, re-checked integrity for everything (which took 6+ hours!) and…
the exact same line on the report still appeared!

Well, I went back and re-named and re-tagged the file again, religiously avoiding any hyphens and
converting everything to en-dashes, refreshed the database, re-checked integrity again… and still the
same line in the report persisted!

You know what it was that was actually causing the report ‘error’? Take a look:

Once I turned on ‘show hidden files’ in my Dolphin file manager, I could see that there was actually a
copy of the actual music file called, simply, ‘.flac’… and the leading dot in its name makes it a hidden
file, which is why it appears in faint grey tones in this screen capture.

I have no idea how that happened, but in re-naming the file at some point in the past, I must have
accidentally created a copy of it without any names -and without any tags either. So, the fully-named
file you see listed was perfectly OK and Niente was not being fooled by anything. The report was
actually 100% correct, but I just mis-read or mis-interpreted: it was saying there’s a file called ‘.flac’
(and there was) and it had inconsistent tags (and it did!). I just couldn’t spot or fix the problem because
(a) I don’t normally have ‘show hidden files’ switched on, and (b) I’d assumed that Niente was getting
the file name I could see wrong for weird reasons (when it wasn’t!)

The fix in this case was trivially easy: delete the hidden file. Refresh once more; perform yet another
integrity check… problem solved!

Niente User Manual v1.0 Page 32

9.3 A Performer Problem
Here’s an example of a problem detected by the Performer consistency report:

The first line of the text report shown in the background here says what the problem is: the
PERFORMER doesn’t match the COMMENTS in a recording of Bruckner’s Ave Maria conducted by
Eugen Jochum.

As ever, I open the file in the Kid3 tag editor and, sure enough, there is indeed a mismatch between the
two tags… but not in the way you might expect! Eugen Jochum is mentioned perfectly correctly in the
PERFORMER tag, so that’s not an issue. Unfortunately, for some reason, I seem to have completely
forgotten to enter any data for the COMMENT tag at all.

It’s not that I spelled the names incorrectly or anything, in other words. The problem is that I just
didn’t spell anything at all in the COMMENT field!

The fix here was fairly easy, because all the information I needed to fill in the comments was visible in
the album art embedded in the music file: Eugen Jochum, Berliner Philharmoniker. Add that into the
COMMENT tag, save the file… refresh the database …. re-perform an integrity check… that line
disappeared off my next report, no trouble at all.

Niente User Manual v1.0 Page 33

9.4 A Second Performer Problem
The second line of that previous Performer report mentioned an issue with my recording of Arvo Pärt’s
Estonian Lullaby. See if you can spot the issue:

This one’s not really difficult, conceptually… but it took me a good couple of minutes to spot it! The
COMMENT mentions Tonu Kaljuste, Tallinin Chamber Orchestra and so on. The PERFORMER tag
mentions Tony Kaljuste… so why exactly is this being reported on as an inconsistency?!

Memo to self: always check your diacritics!

The COMMENT does not menion ‘Tonu Kaljuste’ but calls him Tõnu Kaljuste. The first o isn’t a plain
English ‘o’, but the Unicode character ‘small letter o with tilde’ (it’s character 00F5, if you care!) which
happens to be the 27th character of the Estonian alphabet… and since Mr. Kaljuste is Estonian, it’s
entirely appropriate to spell his name as he would do.

So I got my COMMENT tag entirely correct… but seem to have slipped into monoglot English when
typing in the PERFORMER tag, where he really did get entered as ‘Tonu’. I suppose I’m grateful I
didn’t call him ‘Tony’!

Anyway, the fix is simple: just type the correct Unicode character into the PERFORMER tag so it really
does match the version of his name in the COMMENT one….and then, as ever, re-scan the database
and perform a fresh integrity check. Problem solved.

I’ve shown these real-life examples of what can happen to your tags to make them internally
inconsistent (sloppy typing, inability to spot a diacritic when needed, simple oversight and, finally, a
very odd problem with the inadvertent creation of a hidden file on disk!) to show you the kind of
curatorial activities Niente’s reports can prompt you into doing. The result is a tidier, more coherent
and consistent music collection, at the cost of some minor bits of housekeeping!

Niente User Manual v1.0 Page 34

https://www.compart.com/en/unicode/U+00F5

Appendix A:
Differences between Niente and AFC
If you were at all familiar with running the Absolutely Baching Flac Checker (AFC), which did a
similar sort of job to Niente, you might wonder in which ways the two programs differ from each other.
Here is a list of the key differences:

• Niente uses a relational database in which to store the results of its integrity tests and to
determine the files it should check. AFC simply searched for FLAC files direct off hard disk
and stored the results of its integrity checks within the file being checked.

• Niente never modifies the data content of the files it checks; AFC did. Accordingly, AFC
triggered cascading backups: since the source file had been changed, its backup needed to be
replaced by a fresh copy from source. With AFC checking a 1.7TB music collection once a
month, there would need to be 1.7TB of ‘new’ data pushed to all backup destinations once a
month -including to cloud-based ones. Since Niente never modifies the files it checks, Niente
causes no such ‘backup cascade’.

• Both AFC and Niente perform a fresh calculation of the MD5 checksum of the audio stream of
a FLAC file in exactly the same way. They do it using ffmpeg with 16-bit or 24-bit calculations,
depending on the perceived bit-depth of the original audio stream. The ffmpeg-calculated hash
is then compared to the hash extracted from the FLAC itself via metaflac (which is invariant
since the time of the file’s creation).

• Niente parallelises the initial search for FLACs when a database is first created. AFC never
parallelised any part of its operation. Niente’s degree of parallelism is always the number of
threads available on your CPU (so a 4-core, hyper-threaded CPU will do the initial FLAC
search with a degree of parallelism 8).

• AFC produces textual log files after each run, which you had to visually inspect to see whether
or not files had failed their checks. Niente never produces a log file: its ‘log’ is the rows stored in
the database. You ‘inspect’ those rows at any time by running Niente with the various --report
runtime parameters.

Appendix B:
The Requirement for Sudo Privileges
Niente does not require sudo (i.e., acquired root privileges) for ordinary operation, but you will need it
for installation and performing software updates.

Sudo privileges mean you stay you, and you supply your password, but you acquire temporary rights to
run with root privilege and are thus allowed to create or modify files in restricted folders (like
/usr/bin). It’s a safer way of doing things than becoming root directly, which would give you permission
to do anything at all for as long as you liked.

Niente User Manual v1.0 Page 35

Most distros, during installation, tend to ask you for a user account and automatically give that initial
user account sudo privileges, so you do not then need to do anything at all. Niente or related scripts
will prompt you for your ‘sudo password’ if necessary, and you just supply your ordinary user account
password at that point, and all will be well.

But not all distros do this: Debian, for example, does not and trying to run a sudo command produces
this foreboding error:

...which is quite funny on a home PC where the only person to report to is yourself!

Anyway, for distros where you cannot automatically exercise sudo rights, here’s the workaround. First,
become root. Second, set the default editor to nano or even a graphical text editor of your choice: if
you need help setting sudo, you do not want the pain and hassle involved with using most distros’
default text editor, which is vi. Finally, you invoke the visudo program and add one line of text to the
existing file and save it.

It’s just four steps, in other words. Here are the first three, spelled out, as you’d type them in a terminal:

su - root

 export EDITOR=nano

 visudo

The first command requires you to be able to provide root’s password when asked. Assuming you know
that, you’re in business. When the visudo program runs, you want to find the line which reads:

root ALL=(ALL:ALL) ALL

… and type, underneath it, an equvalent line such as:

hjr ALL=(ALL:ALL) ALL

The first part of that new line is your own username: in my case, it’s ‘hjr’, but you replace that with
whatever username you actually log onto your Linux PC with.

Then you save the modified file: in nano, you press Ctrl+X, then tap ‘y’ to confirm the save, and press
Enter to save the modified file with the filename proposed. Job done: you can now stop being root (so,
type exit). And now you can run any command with root privileges, just by prefixing the command
with the word ‘sudo’:

Niente User Manual v1.0 Page 36

This time, the ‘ls /usr/bin’ command produces no error at all.

As I say, there are only two occasions when Niente requires the use of sudo: installation and applying
software updates, and both of those occasions are strictly ‘one-off ’ or fairly rare affairs.

You definitely do NOT need sudo privileges to run Niente for the purposes of checking your own music
collection for data integrity!

Niente User Manual v1.0 Page 37

Acknowledgements
I’d like to thank the developers of ffmpeg, sqlite and all the other open source software that Niente
uses and coordinates to pull off its music checking tricks: Niente is really only an ‘orchestrating script’,
rather than a complex piece of software in its own right, and would be nothing without the real
programming efforts of all those developers.

My thanks go also to Mark Olde-Olthof for permission to use the picture of the masonry Cheshire Cat
in Christ Church Cathedral, Oxford (copyright Mark Olde-Olthof © 2010) as the Niente ‘mascot’.

Niente User Manual v1.0 Page 38

	1.0 Introducing Niente
	1.1 Some Prior History
	1.2 The Name
	1.3 What does Niente do?

	2.0 Prerequisites for running Niente
	2.1 Niente and the Axioms of Classical Tagging

	3.0 Installing Niente
	4.0 Niente – First Run
	5.0 The Niente Workflow
	6.0 The Niente Main Program Display
	7.0 The Niente Database
	7.1 Creating a Database
	7.2 Refreshing a Database
	7.3 Table Structures and Methodology
	7.4 Schema Description
	7.5 Accessing the Database
	7.6 Backing up the Database

	8.0 Run-Time Parameters
	8.1 Initialization Parameters
	8.1.1 Createdb
	8.1.2. Refreshdb
	8.1.3 Musicdir
	8.1.4 Checkver
	8.1.5 License/Licence

	8.2 Routine Parameters
	8.2.1 Displaycolour/Displaycolor
	8.2.2 Dbname
	8.2.3 Checkdays
	8.2.4 Integritycheck
	8.2.5 Force

	8.3 Reporting Parameters
	8.3.1 Report
	8.3.2 Report-type

	9.0 Example Reports
	9.1 A Date Mismatch
	9.2 A Misleading Date Report
	9.3 A Performer Problem
	9.4 A Second Performer Problem

	Appendix A: Differences between Niente and AFC
	Appendix B: The Requirement for Sudo Privileges
	Acknowledgements

