
Giocoso
The Randomising FLAC Player

by Howard Rogers
Version 1.1 – November 2021

Giocoso User Manual
by Howard Rogers
Copyright © 2021 Howard Rogers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the express prior permission of Howard Rogers (hjr@absolutelybaching.com)

The Giocoso program, together with this accompanying documentation, is distributed in the hope that
it will be useful, but without any warranty; without even the implied warranty of merchantability or
fitness for a particular purpose.

In no event shall liability for any direct, indirect, punitive, incidental, special consequential damages,
to property or life, whatsoever arise out of or connected with the use or misuse of Giocoso or this
accompanying documentation.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries. All other
trademarks are the property of their respective owners. Howard Rogers is not commercially or
financially associated with any product or vendor mentioned in this publication.

Giocoso User Manual v1.0 Page 2

mailto:hjr@absolutelybaching.com

Table of Contents
1.0 Introducing Giocoso... 6

1.1 Some Prior History.. 6

1.2 The Name.. 7

1.3 What can Giocoso play?... 7

1.4 Why Giocoso?.. 8

2.0 Prerequisites for running Giocoso.. 11

2.1 Giocoso’s Digital Storage Expectations..11

2.1.1 The Folder is Key... 12

2.1.2 File Numbering/Naming affects play order..12

2.1.3 Tag Fields and Appropriate Data.. 14

2.1.4 Giocoso and the Axioms of Classical Tagging..15

2.1.5 Music Ownership.. 15

3.0 Installing Giocoso... 16

4.0 Giocoso – First Run.. 17

5.0 Giocoso’s Play Modes... 19

5.1 Direct Play Mode... 19

5.2 Random Play Mode... 20

5.3 Summary of Play Modes... 22

5.4 Pausing and Terminating Play... 23

6.0 The Giocoso Program Display.. 24

6.1 Play Window.. 24

6.2 Album Art Display... 25

7.0 Integrating Giocoso with the Desktop.. 28

7.1 KDE - Plasma... 28

7.2 XFCE - Thunar... 29

7.3 Gnome - Nautilus... 29

7.4 Budgie.. 30

7.5 Other Desktop Environments... 30

7.6 Remembering Album Art Display Location... 30

8.0 Scrobbling.. 32

8.1 Configuring Scobbling.. 32

8.2 Getting Giocoso to Scrobble.. 35

8.3 How Giocoso Scrobbles.. 37

Giocoso User Manual v1.0 Page 3

8.4 Scrobbling with Embedded Cuesheets...37

9.0 The Giocoso Database.. 40

9.1 Creating a Database.. 40

9.2 Refreshing a Database... 41

9.3 Table Structures and Methodology... 42

9.4 Schema Description.. 43

9.5 Accessing the Database... 45

9.6 Backing up the Database.. 45

9.7 Recovering the PLAYS table.. 46

10.0 Run-Time Parameters.. 47

10.1 Initialization Parameters.. 48

10.1.1 Createdb... 49

10.1.2. Refreshdb.. 49

10.1.3 Musicdir.. 50

10.1.4 Importplays.. 51

10.1.5 Scrobble-config.. 51

10.1.6 Checkver... 52

10.1.7 License/Licence... 52

10.2 Appearance/Behaviour Parameters.. 53

10.2.1 Displaycolour/Displaycolor... 54

10.2.2 Artisize.. 56

10.2.3 Captiontext.. 57

10.2.4 Captionbackground.. 57

10.2.5 Listcolours.. 58

10.2.6 Scrobble.. 58

10.2.7 Device.. 59

10.2.7 Editor.. 60

10.3 Selective Parameters.. 61

10.3.1 Dbname.. 63

10.3.2 Selections.. 64

10.3.3 Pause.. 64

10.3.4 Timebar.. 64

10.3.5 Genre... 65

10.3.6 Composer... 66

10.3.7 Performer.. 67

Giocoso User Manual v1.0 Page 4

10.3.8 Comment.. 67

10.3.9 Composition.. 67

10.3.10 Recordnumber... 68

10.3.11 Unplayed... 69

10.3.12 Unplayedworks.. 69

10.3.13 Minduration... 70

10.3.14 Maxduration.. 70

10.3.15 Negate... 70

10.4 Reporting Parameters... 72

10.4.1. Report.. 73

10.4.3 Reportsort.. 75

10.4.2 Reportdays... 76

10.4.4 Reporttype... 76

10.4.5 Recordinglist.. 77

10.4.6 Composername.. 78

10.4.7 Stats... 79

10.5 Run-time Parameter Summary.. 80

11.0 Some Technical Extras... 81

11.1 Use of ALSA... 81

11.2 Lost Scrobbles.. 81

11.3 Fonts.. 84

11.4 Aliases.. 84

11.5 Transitioning from AMP to Giocoso... 87

11.6 Tested Distros... 88

Appendix A: Differences between Giocoso and AMP..91

Appendix B: The Requirement for Sudo Privileges...94

Appendix C: Product Registration... 96

Appendix D: Giocoso on Windows... 97

Acknowledgements... 98

Giocoso User Manual v1.0 Page 5

1.0 Introducing Giocoso
Giocoso is a gapless, trackless, optionally-randomising, optionally-scrobbling command-line FLAC
player for Linux.

It is minimalist in design and in resource consumption, aiming always to get out of the way and let no
distractions get between you and playing your classical music collections perfectly.

It runs in two modes: either with a database, in which case it will randomly select things to play that
meet various selection criteria you can send its way; or directly from a folder full of FLACs, in which
case whatever music is present in that folder will be played, continuously, from beginning to end.

In randomised database mode, Giocoso can be directed with various command-line switches to ‘tweak’
or adjust its randomising behaviour, so that music of particular composers or of particular genres can
be played; or music that lasts a certain length of time can be selected. If music files have been tagged
with embedded album art, Giocoso will display this album art at various sizes, unless instructed not to
do so.

Giocoso can be instructed to submit details of what it plays to Last.fm, a process known without
especially good reason(!) as "Scrobbling". This allows you to build up a web-accessible history of your
music listening over time.

If run with a back-end database, Giocoso will store details of what it plays in its own database, in a
PLAYS table, and the contents of that table can be queried by running Giocoso in one of its various
reporting modes. These reports can be displayed on-screen or written to disk in pipe-delimited text
files. Such files can be imported into spreadsheets of other database back-ends quite easily, allowing for
in-depth analysis of one's music collection and listening habits over time. See my own website at
https://absolutelybaching.com/music-plays-per-composer/ for an example of what sort of thing is
possible in this regard).

1.1 Some Prior History
Giocoso is not the first minimalist, command-line etc etc FLAC player I’ve written: I prototyped a
previous one called ‘the Absolutely Baching Music Player’ or AMP for short at the very end of 2020.
After six months of bolting on new bits of functionality as I came across a need for them, I decided
that AMP had reached the end of its useful life in June 2021. Giocoso draws heavily on AMP’s code
base and could indeed be thought of as ‘AMP v.2’… but it also makes several fundamental changes to
AMP’s way of working, so it’s a bit more than a version 2 revamp.

If you have previously been using AMP to play your music collection, you will find some run-time
parameters have disappeared; the default is now not to scrobble, so that needs to be enabled every time
Giocoso runs; and some new reporting options have been devised. I detail the differences between
AMP and Giocoso more thoroughly in Appendix A.

Giocoso is forwards-compatible with AMP however -meaning, specifically, that if you have an
extensive history of music ‘plays’ recorded in AMP, you can bring that forward into Giocoso and not
lose it. For instructions on doing that, see Section 9.7 on ‘Recovering the PLAYS table’: the steps

Giocoso User Manual v1.0 Page 6

https://absolutelybaching.com/music-plays-per-composer/
https://www.last.fm/

explained there allow you to restore a Giocoso play history from backup, but also apply equally well to
‘restoring’ an AMP play history into a new Giocoso database.

1.2 The Name
As a classical music fan, you will probably already know that the word giocoso is a tempo indication that
means ‘lively, humorous, joyful’ or, particularly, ‘playful’. I couldn’t think of a better name for
something designed to ‘play’ my music collection.

On a slightly less cerebral note, a random search for
‘giocoso’ one day brought forth pictures of a party-
mode cat. Adoring cats almost as much as I adore
music (and wine!), I thought the pairing was ideal.

Joe Playful (and his feline brethren) are thus the
official mascots of Giocoso. They will be used
relentlessly in all future documentation and news
releases about the program!

Meanwhile, regardless of why the name came about,
draw inspiration from the party-loving cats and feel
free to use Giocoso to listen to your classical music
collection in new, insightful and, above all, playful
ways!

1.3 What can Giocoso play?
Giocoso can only play FLAC files. Presented with MP3s, WAVs, OGGs, APEs, AC3s or any other music
format at all, it will simply ignore them: it is hard-coded to look for things called ‘*.flac’ and anything
that doesn’t have a .flac extension will simply be ignored. It doesn’t even matter if a file is a genuine
FLAC file internally: if the file extension doesn’t say ‘.flac’, it will be invisible to Giocoso.

Giocoso does not, of course, know whether it is playing a FLAC of classical or popular music: it makes
neither moral nor artistic judgments in that regard! So, what types of FLAC files you present it with
makes no real difference to its functionality.

That said, the way it plays music files is probably more appropriate to classical music than to other sorts
of music. I mean, simply, that it plays folders of music at a time, without pausing between tracks, and
without providing any possibility of the user pausing the play either. Now, it may be perfectly standard
practice to play Pink Floyd’s Dark Side of the Moon as a whole album in one sitting, without pause… in
which case, Giocoso will fit in fine. But it is certainly standard practice in classical music circles to play
all four movements of a Beethoven symphony one after the other, without significant pause between
them, and without interruption by the audience… so Giocoso’s mode of operation seems best suited to
that sort of ‘concert hall’ music listening experience, as far as I am accustomed to it.

Giocoso User Manual v1.0 Page 7

Ideally, you will present a nice set of tagged FLAC files to Giocoso: it will then be able to display what
it’s playing as it plays it, because it can read those tags and use the information they contain to alter its
display. If your music is not well-tagged, however, then it will still be able to play it directly, but the
display will be annoyingly devoid of useful information!

More seriously, if your music is not properly tagged, it cannot meaningfully be scanned and read into a
database -and, at that point, Giocoso cannot use its database back-end to randomise the playback of
those music files. Without decent tagging, therefore, Giocoso’s functionality is seriously restricted: I
mention more about this in some detail in Section 2.1 below.

1.4 Why Giocoso?
Linux is not short of media players of all sorts and capabilities! From the ubiquitous vlc to the oddly-
named but excellent DeaDBeeF, there is a media player to cater for, apparently, everyone’s whims and
wishes. Except for mine, it would seem, though: I do use other media players from time to time, but
none of them were entirely “right” as my main player of classical music. I think perhaps it might be
useful if I lay out the main reasons why I thought it necessary for me to write a new music player, rather
than use someone else’s!

In no particular order, I’d list my motivations as follows:

• Every music player under the Sun displays -and plays- “tracks”. Even really good ones (such as
DeaDBeef, shown here) have this sort of display:

Now it’s nice to see that there are four movements of Brahm’s 3rd Symphony, I suppose… but
what actual use is there in that display? Does a listener of classical music ever think, ‘I know
Brahms wrote a 4-movement symphony, but I only want to listen to the third movement?’ I
mean, I guess they might do… but should they? In my view, they shouldn’t. Composers wrote
whole operas or whole symphonies or whole concertos: we should listen to them as entire
pieces, not just pick the bits from them we like and play in any order. Thus, I wanted my music
player to be ‘composition-aware’ and ‘track-oblivious’. If you like, I wanted a player that would
create a music listening experience more akin to going to a concert (and having to sit there
from beginning to end, whether you like it or not!) than listening to a digital music player with
‘tracks’, ‘playlists’ and ‘top 30s’.

Giocoso User Manual v1.0 Page 8

• Over the years, I have got into the habit of over-playing some composers and under-playing
others, creating a seriously unbalanced listening experience. You can certainly justify it: my top
composers were my favourites because they wrote the ‘best’ music, after all. But it must equally
be plausible that I was barely giving hundreds of composers even a chance to impress. So I
wanted a music player that chose music for me: that would pick things at random and present
them to me to listen to, whether I had them in mind or not. A music player where you have to
scroll through long lists of composers or compositions and actively pick something to play
would not fit this bill. I needed a randomising player -though one where I could override the
random element if I wanted to, as well.

• I needed a player that would (a) scrobble (that is, add to the record of ‘plays of music’ I’ve made
to my account at Last.fm) and (b) would maintain its own record of what I’d played, in a
database, from which I could extract data to analyze and explain patterns in my music listening
history. A lot of Linux music players will do (a), but they don’t often do (b) -or, if they do, they
don’t advertise it as a key feature that’s readily accessible.

• I wanted a player that spoke the language of classical music: that labelled things as ‘composers’,
‘compositions’ and ‘movements’, not ‘artists’, ‘albums’ and ‘tracks’. Now, a lot of music players
will make room for a column called ‘composer’: but they won’t scrobble it as such, nor allow it
as the basis of a selection. I wanted composers and compositions to be front and centre of the
music listening experience.

• No classical music player should add anything to the digital audio stream, or interfere with it in
any way: we care about our music too much for such tricks to be desirable! So players that
include ‘graphics equalizers’ or ‘sound effects’ to make it sound as if you’re listening to a
recording in a concert hall are not good things! Instead, I want a player to pipe its output
directly to a hardware device without intervening in its processing. That also rules out a volume
control -and pause/play buttons. If the player can control those aspects of the music stream,
they’re interfering too much! I have a proper hardware amplifier with a volume control knob to
use for such things, after all ☺

• Classical music has a particular fondness of the attacca, whereby one movement starts abruptly
as the previous one finishes: any decent classical music player needs to be able to play that
transition between movements without introducing an audible gap. In fact, proper gapless
playback is an essential quality of a decent music player, whatever type of music its playing, but
it’s especially important to classical music listeners. Other players can do this to various
degrees: many even do it perfectly. Mine had to be at least as good to compete (and it is!)

• I’ve spent a lot of time physically organising my music collection in a composer → genre →
composition folder hierarchy. I have equally spent countless hours carefully tagging my music
files with appropriate tag metadata, so that I can distinguish my Leopold Mozart from my
Wolfgang, my Max Bruch from my Max Reger… and so on. My music player needs to respond to
this logical and physical organisation, and use it constructively to make clear music-playing
decisions. If I want to listen to ‘ballet’, or ‘anything sung by Callas’ or ‘something not conducted
by Karajan’, I should be able to instruct my player accordingly and have it work out,
dynamically, what music files then count as ‘valid playback candidates’.

Giocoso User Manual v1.0 Page 9

• I am usually listening to music whilst doing other things -which is definitely not to say, my
music becomes ‘background muzak’: those ‘other things’ might well be me trying to follow the
music in score, for example. Anyway, no matter the specifics, it means I want my music player to
get out of my way: to play the music and then vanish, instead of using ‘look at me!’ visual tricks.
For my money, that means ‘command line’ and ‘no fancy graphics’. So, all those music players
that offer ‘visualizations’ to entertain they eyes as the ear is distracted away from the important
stuff… they’re out! Now, you can always minimise a GUI player and keep it tucked away… but
nothing gets more minimal than running a command-line tool in a ‘dropdown’ terminal, such
as are provided by the likes of Guake or Yakuake. So, terminal, command-line, text-based it had
to be. Yes, my PC has a 10-core, 20-thread CPU with 96GB of RAM and 16TB of mirrored hard
disk space, along with a 44” 4K monitor: I’m going minimal because that’s what classical music
deserves, not because I’m hardware-constrained!

• Classical music demands you pay it serious attention, as I’ve already mentioned. For my money,
that means it needs to be played in the highest possible quality… and that means, MP3s and
OGGs and similar lossy audio formats are not acceptable. My music player therefore needs the
ability to plays FLACs (including high resolution FLACs, equivalent to what you’d get from an
SACD) and nothing else. Players that can handle a bazillion crappy formats I’m never going to
want to subject myself to… they’re out!

• To a large extent, I have “CAO’d” my classical music. In other words, I have used my own
Composition-At-Once program to turn a multi-file composition into a single-file with an
embedded cuesheet that describes where and when all the individual movements can be found
‘within’ that single file. I might rip a symphony CD into four separate tracks, tag each of them
up with their individual movement details, and the run CAO against them and convert them
back into a single, large FLAC file, with an embedded cue sheet that describes precisely where
each movement starts and stops and what its tempo markings are. My music player needs to be
able to read such embedded cuesheets and thus capture details of the individual ‘tracks’ I’ve
played, even though there’s physically only one file to play. Giocoso does exactly that. If it’s
playing a folder containing four individual tracks, it will declare that it’s playing ‘4 tracks’. If it’s
playing a folder containing one ‘aggregate’ file that contains an embedded cuesheet, it will say
it’s playing ‘4* Tracks’ ...and the asterisk tells you that they’re not “real” tracks, in the sense of
being physical files on disk. This ability to switch between per-file and per-composition ways of
thinking is vital in respecting the way I approach, think of and work with my music. It is a
pretty uniquely-classical way of thinking of music, I think.

• I like to analyze how I interact with music: if I’ve got 10,000 recordings I’ve not yet listened to,
I need to know that fact, so I can do something about it, for example. That means I need to be
able to know what I’ve played, when, how long it lasted and so on. I need my player to be able to
store play data which tells me these sorts of things when easily interrogated. I don’t know any
players on Windows or Linux that can do that very well: but Giocoso does.

Now, if any of the above paragraphs ring a bell with you, then you’re the target market for Giocoso.
Anyone that cares about classical music, wants to know what they’re listening to in the aggregate, and
want to listen to music properly organised and in the highest audio quality: Giocoso is for you!

Giocoso User Manual v1.0 Page 10

2.0 Prerequisites for running Giocoso
There are some obvious things you need to do before you can
successfully run Giocoso to play your music. You must, for
example, be using Linux. You also need to be able to run sudo
commands when needed (describing how to achieve that on
various distros is discussed in Appendix B of this document).

You must also store your digital music files in the lossless FLAC
format: Giocoso only plays FLAC and will not (by design!) play
APE, WAV, MP3, OGG or any other digital music format. It was
designed to play classical music: it takes the view that classical
music needs to be listened to in as high quality as possible. Lossless
formats are the only way to do that. It’s also a piece of open source

software and therefore was designed to play open source audio formats only: the Free, Lossless Audio
Codec seemed to invite itself to the party, given the huge clues in its name!

There are some more specific software prerequisites too: you’ll be told about them when you first try to
run Giocoso on a system where they have not been installed previously. Probably the most important
component is ffmpeg, which is available for all Linux distros (but may require some finagling to install
on some distros, such as openSUSE and Fedora, which seem to think it might be patent encumbered
and thus don’t include it by default in their ‘standard’ repositories). In any case, as I say, the program
itself will warn you about necessary software dependencies when it is first run.

By far the most important prerequisite for running Giocoso successfully, however, is so obvious it
perhaps goes without saying, but I’ll say it anyway: you need a well-organised digital music collection,
appropriately and thoughtfully physically structured, with appropriate metadata tags.

It’s actually this last prerequisite which will trip most people up: it seems that rather a lot of people
who are otherwise serious about listening to their classical music cannot be bothered to organise or tag
their music properly. I’ve seen examples where the files are just stored in a single folder, for example,
with all key data (such as composer, composition name and the artists making the recording) are
somehow ‘encoded’ into the physical file name.

Giocoso will play such music collections, because it will see the digital files and happily process them.
But the results will not be the flexible, controllable, useful program you probably hoped for.

2.1 Giocoso’s Digital Storage Expectations
So let me be explicit about what sort of music storage Giocoso will work brilliantly with! I’d summarise
it in three main points, I think:

• Files are organised in a Composer > Genre > Composition physical folder hierarchy

• Files are tagged with a track number, and the track number becomes part of the physical file’s
name, so that the files in a folder are physically organised in the order in which they should be
played

Giocoso User Manual v1.0 Page 11

• Files are tagged in such a manner that Artist=Composer, Comment=Performers, freely
described, and Performer=the main, principal and distinguishing performing artist, described
simply as a single name.

2.1.1 The Folder is Key
I think the first point here is the fundamental and crucial one. Giocoso plays folders, not files, so each
folder in your collection needs to represent a single, unique ‘unit of play’, which is usually a composition.
By this, I mean that whilst you might buy a CD containing both Beethoven’s 4th and 5th symphonies, if
you rip it as a single ‘thing’ into a single folder, then Giocoso will subsequently play eight movements
from beginning to end, without significant pause between any of them. You’ll have just invented
Beethoven’s 4to5th Symphony as a single ‘composition’... which is conceptually just wrong!

What you actually need to do instead, if you are aiming at musical sense, is to rip half of that CD into
one folder and half into a separate folder. Two folders, each containing the music of a single Beethoven
composition. Now Giocoso can play either Symphony No. 4 or Symphony No. 5… but it won’t end up
playing both of them in one sitting, just because you didn’t rip things sensibly...

Putting it even more broadly, then: you need to stop regarding the CD as anything significant in your
music collection. It’s not important in the slightest: it is merely the packaging in which the stuff that
actually counts -compositions- are supplied to you. Your job on receiving a new CD is to rip it in a way
that sensibly separates out separate compositions into their own, unique storage folders.

Sometimes, though, instead of separating things out into separate folders, you’ll need to do the reverse:
join separate things together. Wagner’s Götterdämmerung is usually supplied on 4 separate CDs, for
example. If you rip them into 4 separate folders, Giocoso will end up playing four separate things in no
particular order -and I think it would be a shame for Brunhilde to immolate herself before the Norns
have even opened proceedings.

In cases such as long operas and oratorios, then, you may well start by ripping each CD to a separate
folder, but you will need to combine them into a single folder to end up with a single physical ‘thing’
which Giocoso can play as a single composition.

However you look at it, it’s the physical folder structure that Giocoso will use to define, navigate and
understand your music collection. It will use the logical metadata tags you also supply to record what it
has played and to display useful information about what it is playing currently… but it’s the physical
folder structure that separates your music out into ‘units of play’ that Giocoso will understand and ‘see’.

2.1.2 File Numbering/Naming affects play order
My second bullet point above is important for determining the order in which Giocoso plays things
within a physical folder. It does it, essentially, by alphabetical sorting of file names -and, in alphabetical
sorting, 1 comes before 2, which comes before 3 and so on. So, provided your physical track names are
things like “1 – Zitto!”, “2 – Ahimé!” and “3 – Grand Dio!”, then the music will play in 1-2-3 order, no
matter that the ‘word part’ of their names is listed in Z – A – G order. Now, 1, 2 and 3 will also be the
TRACKNUMBER tag for each file: that’s the FLAC metadata tags kicking in, and it’s good that you
also logically tag your music files into the correct order too. But: fundamentally, Giocoso is paying

Giocoso User Manual v1.0 Page 12

attention to the physical file names when it’s ordering things, not their metadata track number tags.
There should defintely be a correspondence between the logical and the physical… but it’s the physical
that is king as far as Giocoso is concerned.

Be warned, however, that where we humans see “1,2,3,4,5...10,11,12,13…19,20,21...” as ascending
numerically, computers generally do not -though you may not even notice this fact when looking at
things in your file manager:

That looks sorted perfectly normally, even if it’s been split over two columns, right? Well: that’s just one
program managing to do it correctly… but take a look at what my file system thinks of those names:

Giocoso User Manual v1.0 Page 13

As you’d expect, things that are numbered 1 get sorted before things numbered 2 and 3. But imagine
the file names being listed out as if you were doing basic arithmetic with them. You’d probably right-
align them and thus write them out as:

 1.txt

10.txt

...and at that point, the leading ‘1’ of the ‘10.txt’ item is being compared to ‘nothing at all’ at the front
of the ‘1.txt’ item: and ‘nothing’ is always sorted after numbers by a file system. From the previous
screenshot, therefore, you see the consequences: the inconsistent lengths of the numbers in the file
names therefore causes 1.txt to sort after 10.txt. Similarly, ‘2.txt’ gets sorted after all the files that have
names numbered in the twenties.

The file system therefore lists (and Giocoso will therefore play) tracks 10, 11, 12, 13...19 first; then
track 1; then tracks 20, 21, 22...29; then track 2; then tracks 30, 31… and so on.

Putting it succinctly: inconsistent track number lengths will muck up your playback order.

In a three-movement concerto, then, you’ll get away with track numbers ‘1,2,3’. In a four-movement
symphony, you’ll also get away with track numbers ‘1,2,3,4’. But if you’re looking at a Wind Serenade
with 12 movements, you’ll get into trouble with track numbers ‘1,2,3,4…’ and should instead be naming
and tagging them as tracks ‘01, 02, 03, … 11, 12’: everything consistently 2 digits long.

For the sake of not having to remember to do things different for some works as compared to others,
though, I’d basically suggest you get into the habit of always using track numbers that are consistently
two digits long, padded with leading zeroes if needed (and be prepared to make an exception for the
very rare composition that has more than 99 ‘tracks’).

As a final tip: always check your file ordering at the file system level, not in a file manager: if it’s wrong
in a terminal, it will be played in the wrong order by Giocoso, too.

2.1.3 Tag Fields and Appropriate Data
As to the third of my earlier bullet points, where I suggest you use the ARTIST tag to store the music’s
composer, and the COMMENT tag to store its performers…. Well, you don’t have to agree with those
suggestions, but they do represent the way Giocoso works! So if you decide to tag things your own way,
you’ll find a lot of Giocoso functionality won’t work for you properly. For example, as you’ll go on to
discover, you can ask Giocoso to “play me some Britten” by running it with a --composer=britten
parameter. But that only works if the name ‘Benjamin Britten’ has been stored in the ARTIST tag.
Store your composer names somewhere else, and that parameter will not work properly.

In other words, Giocoso is written expecting to find certain classes of information in certain FLAC
tags: if you have chosen to put different information in different tags, Giocoso can still be used to play
your music, but you won’t be able to exploit its searching and filtering capabilities in the way they were
intended.

Giocoso User Manual v1.0 Page 14

2.1.4 Giocoso and the Axioms of Classical Tagging
If in doubt about any of these ‘music organisation principles’, you should read my article on the
‘Axioms of Classical Music Tagging’, available at https://absolutelybaching.com/music-articles/the-
axioms-of-classical-music-tagging/. That outlines and explains in detail how you should tag your
classical music files -and why. If you at least follow Axioms 1 to 10, your music collection will be well-
suited to being played by Giocoso.

By that I mean that Axioms 11 upwards are more ‘matters of taste’ than core organisational principles.
Thus, personally, I like to catalogue my Beethoven under ‘L’ and my Mahler under ‘G’, as per the
dictates of Axiom 12… but if you think that’s an insane way of doing things, you are free to ignore that
particular way of cataloguing music! (But keep in mind before you dismiss Axiom 12 that Giocoso will
find Mahler wherever you file him, provided only that the ARTIST tag mentions him somehow:
following Axiom 12 doesn’t make your music any hard for a computer to find, basically).

Remember, too, that if the demands of Axioms 1 to 10 seem oppressive, and far too much work to get
right, you can always cheat: Giocoso does not care about track titles, so if you call everything you own
‘track01, track02’ and the like, it will play (and search for) things just fine. I can nevertheless not help
feeling that you owe your collection better care and curatorial management of it than that, so I
wouldn’t personally recommend that approach!

2.1.5 Music Ownership
It seems appropriate now to mention a final core assumption that Giocoso makes about your music
collection: that you own it and that it is stored as files on a hard disk in your physical possession! In the
second decade of the twenty-first century, I realise, ownership of music can seem a quaint, archaic
thing. We have the likes of Spotify and Qobuz telling us that one can listen to music just as effectively
and pleasurably by ‘renting’ their copies of music as one can by going to all the faff and hard work of
owning your own music collection. Why not simply rent your music, then?

Well: the first thing to say by way of rebuttal to that proposition is that if you do, Giocoso is not the
music player for you. It has zero ‘cloud playing’ capabilities, so anything you ‘own’ in the cloud is
inaccessible to it, let alone anything you merely rent from the cloud.

And the second thing I’d add is that I can go to the Post Office and buy as many stamps as a I like -but
that doesn’t make me a stamp collector. I can similarly go to the supermarket and get as many small
coins in my change as I can handle, but that makes me no coin collector! If you treat your classical
music as a commodity to be consumed, a metaphorical pile of loose change, be my guest… but Giocoso
is not the music player for you. There’s nothing wrong with buying stamps to post letters, or using
small change to make small shop purchases -but neither task makes you a philatelist or a numismatist!

Likewise, Giocoso is intended for use by people who regard classical music as something to own,
collect and carefully curate… and not merely to consume.

Giocoso User Manual v1.0 Page 15

https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-tagging/
https://absolutelybaching.com/music-articles/the-axioms-of-classical-music-tagging/

3.0 Installing Giocoso
To install Giocoso on your Linux system, simply type these commands at a terminal prompt:

 cd

 wget https://absolutelybaching.com/abc_installer

 bash abc_installer --giocoso

The cd makes sure what is about to happen takes place in your own home folder. The wget command
fetches the Absolutely Baching Installer script (and obviously needs to have been installed before you
start: it’s present by default on most Linux distros with which I’m familiar, though, so should generally
work ‘out of the box’. The bash command then runs that script.

The installer script will fetch the Giocoso software from the Absolutely Baching website and will copy
it into the appropriate folders for you. Since root permissions are needed to do this copying, the script
will prompt you to supply your sudo password at one point: you do need to be able to run with root
permissions via sudo for the installation to succeed.

An optional step is now to make sure that your terminal of choice always opens with dimensions of at
least 102x26. Most distros seem to default their terminals to opening at 80x24, and this will result in
garbled output from Giocoso. So you should alter the ‘profile’ governing a terminal’s default size. On
Konsole, that’s Settings → Edit Current Profile, but you also need to do Settings → Configure Konsole and
turn off the ‘Remember window size’ option, so that the new profile values take effect. In Gnome, it’s
just click the terminal’s ‘hamburger menu’ (three horizontal lines, up in the top left), then click
Preferences. The default profile is named under the ‘Profiles’ item on the left, and can be altered there.

I say that it’s an optional thing to change your terminal size in that Giocoso will work perfectly well
without you doing it: but it is written to expect a 102x26 window and will be mostly unreadable
garbage if you don’t accommodate it in this way!

So, with the software installed and your terminal configured to be the ‘right’ size, you can run Giocoso
for the first time by typing the simple command:

giocoso

The command to launch Giocoso can be much more complicated than that, as we’ll go on to see. But,
fundamentally, that’s it: type the word ‘giocoso’ at the terminal prompt and the program will run in its
‘default’ state. Pretty straightforward, right?!

Giocoso User Manual v1.0 Page 16

4.0 Giocoso – First Run
When first run, Giocoso will scan your system for the presence (or absence!) of necessary software
prerequisites. If it finds any software missing, it will prompt you to install it, and then quit. You can
then install the software using the command it suggests (or via any other software installation
mechanism with which you are more comfortable), and then re-run Giocoso, until it declares itself
happy with the software environment it finds itself in.

Here’s a worked example on a freshly-installed (and totally default) Ubuntu 20.04.2 system:

You should be able to make out that the program has determined that quite a lot of new software needs
to be installed, such as flac, ffmpeg, sqlite3 and so on. Notice that Giocoso is ‘distro-aware’: it knows
it’s being run on Ubuntu, so it’s suggesting a sudo apt install command to get the required
software installed. On openSUSE, it would provide a zypper command; on Fedora a dnf one, and so
on. Giocoso has been tested on all major distros (anything in the top 10 of Distrowatch, basically), so it
should get most of them right, but if it is being run on something out of the ordinary, it may not
entirely understand how to install required packages -in which case, it’s down to you to understand you
choice of distro’s package management processes!

Anyway: clearly, this particular distro needs me to install some extra software, so let me run the
command shown and then re-run Giocoso afterwards:

Well: it’s certainly a different response. This time, there’s no software missing… but Giocoso’s still not
doing much! That’s because it needs to be run in a folder full of FLAC music files. If it can’t find any
such files in the folder in which it’s being invoked, it produces the error message you see above: There
are no music files to play in this folder…

Giocoso User Manual v1.0 Page 17

https://distrowatch.com/

So let me ‘cd’ to a folder I know contains some FLACs and re-run Giocoso once more:

This time, we have success: the terminal window fills up with text describing what’s happening
(basically, that Giocoso has found some FLAC files to play and has begun to play them) and the album
art embedded in the first FLAC file found in the folder has been displayed in the middle/lower part of
the screen. As you’ll see in Section 10.2.2, the display of album art is something that can be turned off,
if you prefer. The art can also be displayed smaller and larger than shown here, if its default size is a
problem… but those are configuration issues for later.

For now, we can sum up installation and first run issues as:

• Download the abc_installer script

• Run it, supplying --giocoso as a parameter

• Type the command giocoso anywhere at the command line

• Follow the prompts to install software prerequisites

• cd to a folder containing some FLAC files

• Type the command giocoso to play them

Please note that some distros (notably, openSUSE and Debian) do not install a small program called bc
by default. Its absence completely screws up Giocoso’s ability to display messages properly. On such
distros, the first run of Giocoso will prompt you to install bc; the second will prompt you to install any
other missing prerequisites. It won’t be until the third run attempt that Giocoso will work properly. On
all other distros, it only takes two goes before Giocoso ‘gets it’.

Giocoso User Manual v1.0 Page 18

5.0 Giocoso’s Play Modes
Giocoso can be made to work in two quite
independent ways, interchangeably, back-and-
forth:

• Direct play of the contents of a specific
folder or a specific FLAC file; or

• Randomised play by selecting from the
contents of database

Out-of-the-box, Giocoso can only do the direct
type of play. To get the randomised plays
happening, you’ll have to create a database and

get Giocoso to populate it by scanning your music folders. If the contents of those music folders change
for any reason (such as you buying a new CD) you’ll periodically need to refresh that database, too.

I’ll describe both play modes in more detail now.

5.1 Direct Play Mode
This is the simplest way to get Giocoso to play music -and the way it’s designed to work ‘out of the box’.
At its simplest, you open a terminal, ‘cd’ to a folder containing FLAC music files and type giocoso at
the command prompt. Giocoso will then launch and play the music in the folder it’s been launched
from, without pause, and in file name sequence order. (So, hopefully, you’ve tagged your music files
with correct ‘track numbers’ and they have been included at the beginning of the physical file names!)

For example:

Here, I’ve opened a terminal and am navigating my way through my music collection folder hierarchy
until I come across a specific recording I wish to play in the Béla Bartók folders. I cd into the specific
folder I want, and type the plain command ‘giocoso’.

When you use Giocoso for direct play of music, no record is kept of what music you’ve played: there is
no database involved here in which to store such information. Features of Giocoso which depend on
the existence of a database cannot therefore be used, either. For example, we cannot stop the playing of
a particular composer’s music because you’ve played too much of it recently (a feature called the

Giocoso User Manual v1.0 Page 19

‘timebar’) -without a database of plays to consult, in direct play mode, we cannot know whose music
has been played recently in the first place!

Note that if you ‘integrate’ Giocoso into your desktop environment (see Section 7 for details), you can
invoke Direct Play mode using a graphical file manager, such as Dolphin or Nautilus, by navigating to a
folder and right-clicking the folder icon (or a specific FLAC file) and selecting ‘Open in Giocoso’ from
the context menu that appears:

Here, I have navigated to a folder of music in Dolphin, right-clicked the folder name and am then able
to select the ‘Open in Giocoso’ menu option, highlighted in red.

This is an exact GUI (i.e., graphical application) equivalent to cd-ing to that folder in a terminal session
and typing the ‘giocoso’ command: it’s just that you’re using your desktop environment standard file
management tools to perform the ‘play’ rather than terminal-based commands.

When Giocoso is invoked from your file manager, you are still running it in Direct Play mode, and so
the same sort of restrictions pertaining to that mode still apply.

5.2 Random Play Mode
The second mode in which Giocoso can run involves consulting a database which describes your
physical music collection and selecting things out of that database to play, more or less at random. You
can influence what gets played: you can demand Giocoso only plays music by a particular composer, or
recordings in which a particular conductor is taking part… but, on the whole, you leave it to the
database to select randomly.

The purpose of this mode of play is really to get you listening to the dark corners of your music
collection: the bits that seldom get played, because for one reason or another, they do not spring to the
top of your mind if you were yourself choosing what music to play.

Giocoso User Manual v1.0 Page 20

To invoke Giocoso in Random Play Mode, you first have to create a database; you then have to scan
your music collection and have its contents recorded in the database; and then you simply run Giocoso
from the command prompt with a ‘run-time parameter’ indicating which database it should consult.

You would, for example, type the following command to create a database called ‘main’:

giocoso --createdb --dbname=main --musicdir=/music/classical

The database creation process ends with an automatic scan of the /music/classical folder contents
(which, depending on the size of your music collection, might take around half an hour upwards to
complete).

It is important to realise that Giocoso’s database merely contains information about how to find music
files on disk. The music files themselves are not in any way modified or moved by the database
scanning process. The database is therefore always quite small (mere Megabytes, even if your music
collection is Terabytes big and comprised of tens of thousands of files).

Once the database has been created and populated, you can invoke Giocoso most simply in random
play mode like so:

giocoso --dbname=main

Notice that you always have to mention the database name if you want Giocoso to operate in
randomised play mode.

The creation of a Giocoso database causes a ‘snapshot’ of your music collection to be taken. It’s the
contents of this snapshot that triggers Giocoso to find FLAC files on your hard disk to play. However,
if the FLAC files on your disk change in some way from the way that they are recorded in the database,
that will cause Giocoso problems.

If you add three new CD rips to your music folders, for example… Giocoso won’t know they exist
(because they didn’t exist at the time of database creation) and so cannot ever randomly select them
for play. If you rename some FLACs on your hard disks: again, Giocoso won’t know that you’ve done
that, and will have a record of those FLACs under their original names. If it picks one of them to play
randomly, it will error… because it will try to play the file under its old name/location, not its new, and
won’t understand why something it once saw in Location X as Filename Y is no longer discoverable
with those details.

And so on: I won’t labour the point! If your music collection changes after you create the initial
database, you need to tell Giocoso about those changes. That’s the process of refreshing the database,
and you should do that quite frequently with a command such as:

giocoso --refreshdb --dbname=main --musicdir=/root-of/music/

Structurally, the command is very similar to the process of creating the database in the first place: we
need to know the database name involved and the location of the root of your music colleciton folders,
so we know where to scan for changes.

See Section 9 for more details on the database creation and refresh procedures.

Giocoso User Manual v1.0 Page 21

By default, any recording scanned into the database during a --createdb or --refreshdb operation is
available to be randomly selected during a playback session where --dbname is in use (i.e., in Random
Play Mode, everyone is equally likely to be selected for the ‘next play’).

It may happen, however, that you wish to prevent anything by a particular composer being selected for
play for as long as you feel disinclined to listen to him or her. You can achieve that by ‘configuring an
exclude’.

Exclusions can be configured by creating a text file called excludes.txt in the
$HOME/.local/share/giocoso folder. It has to be called that name, and it must be stored in that
location, otherwise it simply doesn’t work. You simply add composers’ names to that file, one name per
line. The names need to match exactly with the way you tagged the music files in the first place. If you
tagged Symphony No. 5 as being by ‘Ludwig Beethoven’, it’s no good having a line in the excludes.txt
reading ‘Ludwig van Beethoven’: if they don’t match, the exclude won’t take proper effect.

When you are happy to listen to an excluded composer again, you can either delete one line out of the
excludes.txt using the text editor of your choice ...or, if he or she was the only excluded composer, you
can just delete the entire file. You can always create another in the future, if the need arises.

If you have many lines in your excludes.txt, it can slow down Giocoso’s ability to randomly select
something to play: it’s best to stick to no more than a couple dozen entries, really.

If you just want to prevent Giocoso picking a particular composer at random for a period of a few
hours, rather than for weeks or months at a time, then you probably want to use the --timebar run-time
parameter, rather than the excludes.txt. You could also use the --composer parameter with a --negate
override to prevent the playing of a particular composer on an entirely ad hoc basis. See Section 10.3.4
for an explanation of the timebar feature and Sections 10.3.6 and 10.3.15 for details on selections by
composer and negation.

5.3 Summary of Play Modes
To conclude this high-level overview of the two main modes of Giocoso’s operation:

• Direct Play Mode is what you get when you run Giocoso from a folder full of FLACs. There’s no
database involved; there’s no randomisation of any sort. Whatever is in the folder will be
played, beginning to end, in file name sequence order.

• Random Play Mode is made possible by the creation of a database. It is performed by
mentioning the database name when running Giocoso (with the --dbname parameter)

• The database, once created, should be kept in synchronisation with your actual music collection
by frequent refreshes of the database.

• The contents of the database can be partially ignored for playback purposes if an excludes.txt
exists, in which specific composers are mentioned by name. Any composer mentioned in
excludes.txt cannot be selected for random play, though Direct Play Mode can still be used to
play them.

Giocoso User Manual v1.0 Page 22

5.4 Pausing and Terminating Play
No matter what play mode you use, you cannot pause play in Giocoso. You don’t pause a concerto in
mid-movement at the concert hall, do you?! Right: Giocoso follows that exact same model of play.
Once started, you listen until the end ☺

Of course, you can halt play in Giocoso at any time: press Ctrl+C and playback will be terminated
(there will perhaps be a couple of seconds of music to play from buffered memory, but otherwise
termination is pretty much instantaneous).

A piece of music that is interrupted by this Ctrl+C termination will not be recorded as having been
played at all. It will therefore also not be scrobbled to Last.fm (assuming you’re using that option). The
composer of the interrupted piece will additionally not be subject to any time-bar that may be in use
(see Section 10.3.4), since the program does not recognise partial plays as counting for anything.

Giocoso will terminate cleanly when it has played to the end the last possible ‘selection’ it has been
asked to play (with the --selections=y runtime parameter: see Section 10.3.2 for details). If you don’t
specify a selections parameter, Giocoso’s default behaviour is to play a single piece of music through to
completion and then cleanly terminate itself. All clean terminations only happen after details of the last
piece of music played has been recorded in the Giocoso database and (if requested) scrobbled to
Last.fm.

Giocoso User Manual v1.0 Page 23

6.0 The Giocoso Program Display
6.1 Play Window
Whichever play mode you run Giocoso in, the main program window will always look similar to this as
music playback actually takes place:

At the top, you’ll be told whether you’re doing ‘Direct Play’ or (as in this case) ‘Randomised Play via a
database’ -and, if a database is being used, it’s name will be shown.

The folder of music being played will be listed against the ‘Now In’ label. This might get truncated if
the path and file names concerned are very long: Giocoso uses a 101-character wide display, so tends to
trim path/filenames when they exceed about 85 characters.

The ‘Playing’ label then displays the number of tracks found to be played. This number is invariant
(that is, it doesn’t change to indicate we’re now playing track 2 rather than track 1, for example). It’s a
track count display, not a track progress indicator.

In this screenshot, we see the number of tracks suffixed with an asterisk, so that we read: Playing: 04
Tracks*, rather than just Playing: 04 Tracks. The extra asterisk is there to tell you that the count of
tracks is ‘fake’! In other words, if you are in the habit of creating ‘superFLACs’, which are single
physical files with an embedded cuesheet that explains where the tracks/movements ‘within’ the single
file begin and end, then Giocoso will count the number of tracks in the cuesheet and display that
number, rather than declaring there’s just one physical file in the folder. The asterisk is, in other words,
an indication of the presence of a superFLAC and the fact that the track count is ‘virtual’, not physical.

The ‘Duration’ label shows the total duration of the entire folder of music, not of the specific track
being played, whilst the ‘Selection’ label indicates whether you’ve asked to play a number of pieces in
succession and, if so, what ‘play count’ we’re up to within that. If you run Giocoso with the parameter

Giocoso User Manual v1.0 Page 24

--selections=9, for example, that means ‘play 9 works one after the other’, and if Giocoso was currently
on the 6th of those plays, you’d see “Selection: 06 of 09 selections” displayed here.

The ‘Time Bar’ label tells you how many time bar hours are in effect, if any. This can only ever work in
Random Play mode: in Direct Play mode, a ‘Not in use’ message will appear instead. The timebar is a
way of saying ‘if you played something by Beethoven at 9AM, don’t play anything else by him until x
hours have passed’. It can only function when a database of what we’ve played and when is in use.

In the middle of the program display, you’ll see the full name of the composition that’s being played,
along with the performer details. These are shown (usually) in yellow and green text and get their
information from the ARTIST, ALBUM and COMMENT tags.

If you have applied any ‘selection’ run-time parameters (such as ‘play something by composer X’ or
‘play a piece of music belonging to genre Y’ or ‘play something where singer Z is performing’), then
these ‘filters’ will be displayed in blue text, so you can see something of the reason why Giocoso has
decided to play a piece. In the example screenshot from earlier, for example, you can see I’ve asked to
play previously unplayed works (that would be because I used the --unplayed runtime parameter) and
also asked only to play works that last less than 5 minutes (because I used the --maxduration=5
runtime parameter).

At the very bottom of the main program display, you will see an ‘elapsed time’ count ticking down to
the estimated conclusion time (so you know when the currently-playing piece of music will stop
playing). The countdown is for the currently-playing composition. If you’ve asked to play 6 different
selections, for example, the ‘end time’ shown will be for each selection in turn, not when the entire set
of 6 compositions has been played. That’s partly because Giocoso doesn’t know when the complete set
of selections will end: it hasn’t made them yet, so cannot possibly know their various individual
durations!

This area of the screen will also show messages about when a ‘play’ has been scrobbled to Last.fm (if
you’ve asked for that to happen) or a ‘No scrobbling requested’ message (if you haven’t) and so on.
When a complete cycle of play ‘selections’ has been made, you’ll be told here, too, that ‘Playback has
finished’:

As you see, the program display is (deliberately!) sparse: it gives you information about what choices
you’ve made and the randomising choices Giocoso has made. It tells you when you can expect playback
to end. It does not indicate per-track information, ever: classical music listeners should be listening to
‘compositions’ not ‘tracks’!

6.2 Album Art Display
By default, whenever Giocoso starts playing something in its main play window, it will also extract the
album art from the first FLAC found in the folder selected for play and display that (usually in the
middle-lower part of your screen) as a more visual clue to what’s been selected.

Giocoso User Manual v1.0 Page 25

The general effect ends up looking something like this, therefore:

The default size for the album art window is 450x500 pixels. A 450x450 pixel window displays the
album art proper, but an extra 450x50 bit is bolted on underneath that, in which the
composer/composition names are displayed. The result is the 450x500 pixel display shown here.

Here’s a perhaps clearer picture of the effect of displaying album art plus the composition name:

Giocoso User Manual v1.0 Page 26

If a 450x500 window is too large or too small for your monitor, you can decrease or increase its size
with the --artsize parameter. See Section 10.2.2 for details, but in summary: --artsize=large gives you a
900x960 art display window; --artsize=medium gives you the default 450x500 one; and
--artsize=small yields a 300x360 one. Finally, if you’d rather not display album art at all, then --
artsize=none will switch the window off completely.

The text in the bottom ‘bar’ of the album art display is derived by taking the last name of the
COMPOSER tag and as much of the ALBUM tag as is thought will fit the available space. Note that
this causes some composers to be displayed a tad awkwardly: Benjamin Britten will be perfectly fine
displayed as ‘Britten’, but Ralph Vaughan Williams will be displayed as plain ‘Williams’ and Sir John
Blackwood McEwan will be shown as just ‘McEwan’. There’s not a lot that can be done about this, I’m
afraid.

Note that the text in the ‘composition name’ label is always “Liberation Serif ”, which is an open source
font commonly installed on all distros with which I’m familiar. If you don’t have it installed, though,
then the display results may be unpredictable. Here, for example, is what happens on Arch (which is
famously installable in very minimalist mode, so extra fonts don’t just ‘happen’ by accident!):

As you can see, the caption is still being displayed, despite Liberation Serif not being present on this
particular installation of Arch. You’ll maybe note, however, that it’s being displayed in a font which is
clearly a sans serif of some kind (that is, there are no tail or strokes finishing off the shape of each
letter). On this occasion, therefore, Giocoso has been able to silently substitute in an alternative font. It
should be able to do the same whenever Liberation Serif is missing… but results may vary!

As an aside, the Liberation fonts are installable easily enough in most cases by using your distro’s
standard package manager. If all else fails, they’re available for free download from Github. But as
you’ve just seen, you may well not need them at all, if Giocoso can work around their absence.

Anyway: the album art is there to display if you want it, by way of a quick visual clue to what’s playing
and with a short caption that gets more specific about it, too.

Giocoso User Manual v1.0 Page 27

https://github.com/liberationfonts/liberation-fonts

7.0 Integrating Giocoso with the Desktop
As previously described, Giocoso at its simplest can be invoked from a terminal session in a folder
containing FLACs in what is known as ‘Direct Play Mode’. Giocoso can also be invoked in Direct Play
Mode via the operating system’s standard File Manager: one can then navigate to a folder using a
familiar GUI tool, right-click the folder (or FLAC file) and ask for it to be opened in Giocoso. Having
the File Manager offer that option, however, requires ‘integrating’ Giocoso with the desktop
environment, as a one-time operation.

To do that, you need to run this command:

giocoso --integrate

You will need to be able to provide a sudo password at one point, because integration requires writing
files to /usr/bin, which ordinarily requires root permissions. Some desktop environments will respond
to the integration process immediately. In KDE, for example, you’ll immediately be able to right-click a
folder full of FLACs and select the ‘Play in Giocoso’ right-click menu option. Gnome similarly
responds immediately. In XFCE, however, it’s necessary to log out and log back in before the effects of
desktop integration become visible.

Running that command is really all you need to do, but I’ll now document what the Giocoso ‘integrate’
process actually does (or tries to do!) to your operating system to make things work, so if necessary you
can go through the various files and make manual changes as appropriate, should things not appear to
be working for some reason.

7.1 KDE - Plasma
The Giocoso integrate option creates a KDE ‘Service Menu’ (which is KDE’s term for ‘a menu option
that appears when you right-click a folder or file’). It does this by creating a new file called
giocoso.desktop inside the folder $HOME/.local/share/kservices5/ServiceMenus. The file should
contain the following:

[Desktop Entry]
Actions=PlayinGiocoso
MimeType=inode/directory
Name=Play in Giocoso
ServiceTypes=KonqPopupMenu/Plugin
Type=Service
X-KDE-Priority=TopLevel
Terminal=True

[Desktop Action PlayinGiocoso]
Name=Play in Giocoso
Icon=/usr/share/applications/giocoso.svg
Exec=/usr/bin/giolauncher.sh

Note the MimeType entry: it means you can only right-click folders, not individual FLAC files.

Giocoso User Manual v1.0 Page 28

This now gives you the ability to right-click a folder and have any FLACs it (directly) contains played
in Giocoso -but, clearly, when you right-click in a GUI, you can’t also supply some command-line
parameters that might be important. For example: you can’t say to ‘scrobble’ this play; or to direct this
play’s audio to hardware device X or Y. By default, therefore, Giocoso plays initiated by right-clicking a
folder in Dolphin will use the hardware device called “default” and will not scrobble.

To allow you to change these defaults, the Giocoso integration option also created a folder and script
called $HOME/.config/plasma-workspace/env/path.sh, in which it added these lines:

#!/bin/bash
export GIO_DEVICE="default"
export GIO_SCROBBLE=0

Replace the values for each parameter shown as appropriate. If you want scrobbling to happen when
you right-click a folder to play its contents, set GIO_SCROBBLE=1. And replace ‘default’ for the
GIO_DEVICE setting with whatever hardware device ID you have determined works for your system.

Be warned that the parameters in the path.sh will apply to Giocoso plays that do not occur as a result of
right-clicking a folder, too. The plasma-workspace/path.sh file technique is not perhaps the obvious
place where you’d set environment variables (one tends to think of .bashrc, for example, as the more
common alternative), but it’s the only way to get GUI KDE apps to become aware of environment
variable settings.

7.2 XFCE - Thunar
When running under XFCE, the Giocoso integrate option creates a new ‘Custom Action’ (which is
what XFCE’s file manager, Thunar, calls the items in the menu that appears when you right-click a file
or folder). It does this by appending text to the $HOME/.config/Thunar/uca.xml, as follows:

<action>
 <icon>/usr/share/applications/giocoso.svg</icon>
 <name>Play in Giocoso</name>
 <unique-id>1624366500142809-1</unique-id>
 <command>/usr/bin/giolauncher.sh %f</command>
 <description>Play in Giocoso</description>
 <patterns>*</patterns>
 <startup-notify/>
 <directories/>
</action>

This new menu option does not, however, take effect until you log out and log back in.

7.3 Gnome - Nautilus
Under Gnome, the --integrate option creates the usual /usr/bin/giolauncher.sh “stub” script and then
simply copies it to $HOME/.local/share/nautilus/scripts. This is simple -but also results in a less-
attractive right-click option: instead of being able to click a ‘play in Giocoso’ option when you right-
click a folder of FLACs, the best you can do is right-click, select ‘Scripts’, and then click on
giolauncher.sh. It works, but it’s not particularly pretty, I’m afraid.

Giocoso User Manual v1.0 Page 29

7.4 Budgie
Budgie is functionally identical to Gnome, so Giocoso’s integrate option on that desktop also creates a
shell script in the $HOME/.local/share/nautilus/scripts folder, and similarly creates an immediate
opportunity to right-click a folder of FLACs and select Scripts → giolauncher.sh to get it to play in
Giocoso.

7.5 Other Desktop Environments
I regret to say that if your choice of desktop environment is not one of KDE, Gnome, XFCE or
Budgie… Giocoso won’t automatically integrate for you. Hopefully by reading the above, you’ll have an
idea of what you’ll need to do manually to get right-click-and-play-in-Giocoso functionality for your
particular choice of desktop environment, though. Basically, all that’s required is to get your file
manager to invoke a ‘giolauncher.sh’ script, which in turn calls the giocoso.sh script proper… but,
unfortunately, Giocoso cannot automate this process for you at the present time.

7.6 Remembering Album Art Display Location
If Giocoso is asked to display album art (with the --artsize parameter set to large, medium or small),
then it will always try to display it touching the bottom most part of your screen display, in the middle.
Usually however it cannot open the album art there: desktop environments of all description tend to
like opening things in the top-right of their screens. So, you will tend to see a sort-of ‘flash’ effect as the
album art window is moved to its lower-middle location. That can be slightly unnerving to watch… and
sometimes it doesn’t work anyway! If other application windows are in the way, the movement
algorithm cannot always do its work.

On KDE, it’s possible to fix this by getting KDE itself to remember where the album art display
window should be opened and located every time -and this works every time without fail. Other
desktop environments may or may not have such a feature: there was a Gnome extension that allowed
it on that desktop, for example, but it’s no longer compatible and no replacement has yet been made
that I’m aware of.

So, just for KDE users for now: once you’ve got some album art displayed in the correct location, right-
click it’s top bar and select More Actions → Configure Special Application Settings from the context
menu that appears.

Now click the Detect Window Properties button: your mouse cursor will turn into a ‘+’ or crosshair
pointer. Click on the album art display window with it and you’ll see a panel appear called ‘Add
property to the rule’. Various items will appear describing the properties of the window you just clicked
on.

The two properties we care about are the window’s title (which will always be
ImageMagick: .displayart.jpg) and its position, which will display with its current x and y coordinates
relative to your screen size as a whole, in brackets. On my 4K monitor, for example, I see it displayed as
(1,620 1,464) or similar. That means the window starts 1620 pixels across (which is approximately half
of my 3840x2160 monitor settings) and 1464 pixels down (which is toward the bottom of my screen,
since 0, 0 is the top left-hand corner of your screen).

Giocoso User Manual v1.0 Page 30

If you hover over a property, you’ll see a ‘+’ button appear on the far-right of it. For the title and
position properties, therefore, click their respective plus signs to add them to as new property rules
and then click the ‘X’ button to close the ‘Add property to the rule’ window. You’ll now be left looking
at something like this:

The main thing to do now is to click on that ‘Unimportant’ drop-down box next to the ‘Window title’
label: select Exact match instead.

The coordinates for the ‘Position’ rule are those derived from the current location of your album art
display window: if you’re happy with its placement, you’ll probably be happy with the placements of
identically-named windows in the exact same location in the future, so you can probably just accept
whatever you see displayed here. Very roughly, the first number should be half-way across your screen,
less half your --artsize setting; and the second number should by the vertical resolution of your screen,
less your --artsize plus 60 pixels for the caption border.

Anyway: once you’ve got a title+Exact Match and a position rule in place with numbers you’re happy
with, click the OK button to save the new settings.

You’ll now find that any time Giocoso starts playing a new piece of music, the album art will
immediately appear in the correct location ...and there won’t be any unnerving windows flying about
your screen to get it positioned appropriately! Sadly, this sort of application positioning is not
available, as far as I know, for anything other than KDE: there’s a reason I use it, I guess!

Giocoso User Manual v1.0 Page 31

8.0 Scrobbling
“Scrobbling” is the slightly odd word that means ‘send details of the things to which I’ve been listening
up to a cloud service’ -and the ‘cloud service’ everyone usually thinks of in this regard is Last.fm. It can
be a useful thing to do, if over years rather than months, you allow it to build up a long-term history of
your listening habits.

That said, Last.fm is infested with people who wouldn’t have the first clue about classical music! The
way scrobbles are usually captured and recorded is also clearly not informed by classical music practice:
everything is track-based, so if you listen to Beethoven’s 5th Symphony, that counts as 4 scrobbles, one
per ‘track’ (i.e., per movement). Despite that, I’ve been recording my plays to Last.fm since 2008, and it
is nice to discover who my top 10 composers are and so on.

These days, the track-centric approach to recording ‘listens’ annoys me more than it did in 2008!

Thus: Giocoso does not scrobble by default, though it can do so if you do some fairly painless one-off
configuration, and I’ll describe that process now.

8.1 Configuring Scobbling
To start with, you will first need to create an account at Last.fm (which is free to do, but is completely
independent of anything to do with Giocoso, so don’t complain to me about them, please!) Once you
have registered as a new user, you can log on to your account for the first time. Once you’ve done that,
you need to do something which Last.fm call ‘creating an API account’… which sounds complicated,
but really means ‘set up some security credentials so that third-parties can record ‘listens’ into my
Last.fm account.

So, to create these credentials, you have to be logged in to Last.fm and then visit
https://www.last.fm/api/account/create.

When you do so, you’ll see this sort of screen:

Giocoso User Manual v1.0 Page 32

https://www.last.fm/api/account/create
https://www.last.fm/join
https://www.last.fm/user/dizwell
https://last.fm/

You need to fill the screen as you see me doing here: the contact email will be pre-filled for you, so you
just need to supply something for the ‘Application name’ and ‘Application description’. What you
supply doesn’t have to be very descriptive and the suggestions you see here will work fine. You should
definitely leave the ‘Callback URL’ and ‘Application homepage’ fields empty.

Click the red ‘Submit’ button when you’re ready, and the screen will change to this:

I’ve blanked out parts of the ‘API key’ and ‘Shared secret’, hopefully for obvious reasons! These allow
third parties to post to your Last.fm account, so it’s important that you don’t share them around
lightly!

You will need both pieces of information in just a moment, however, so keep the web browser page
handy, or copy-and-paste the details shown into a text editor or equivalent, so you can access the
details when necessary.

We now switch away from Last.fm and their security shenanigans and instead run Giocoso on the
home PC once more ...but this time, using a new command line switch to make it do Scrobbling
configuration. The command you want to run at a command line prompt (in any folder you like: it
doesn’t need to contain music at this stage) is:

giocoso --scrobble-config

This will cause Giocoso to display a welcome message, prompting you to press a key to continue (or
Ctrl+C to quit). I’ll assume you press any key at all to keep going!

Giocoso doesn’t waste any time: it immediately prompts you to supply the ‘Last.dm API Key’:

Giocoso User Manual v1.0 Page 33

So, you just copy-and-paste in the information that was previously displayed on the Last.fm API
Account screen. In my case, I’ll paste in the ‘7f154d4…’ key. Press Enter to submit it and move on:

Giocoso now prompts you to supply the ‘Shared Secret’ from that same Last.fm screen we saw before,
and again you copy-and-paste that in, so you get the data entry exactly right. Press Enter to submit it.

It’s quite hard to describe what now happens, because it should all happen automatically and all sorts of
things happen seemingly simultaneous! But broadly speaking, you should end up looking at a screen
that looks a bit like this:

The script running in the background has taken the two pieces of API security information (which I’ve
again mostly blanked out) and used it to construct a URL (in blue). It then attempts to open your
default web browser at that new URL. Most often, it will succeed in doing this -but occasionally, the
browser window will either pop-under your other windows, so you won’t know that it has worked; and

Giocoso User Manual v1.0 Page 34

sometimes, it simply doesn’t work at all! If that happens, you just need to copy the URL in blue and
manually open a browser and paste that URL into the address bar.

However you do it, you should end up at a Last.fm web page asking you to log into your account. You
just provide your standard Last.fm username and password credentials to get to this screen:

Here, you are being asked to authorise Giocoso to be able to scrobble to your Last.fm account. You
should click the ‘Yes Allow Access’ button… and you’ll receive a bright green confirmation message
saying that ‘you have granted permission to Giocoso to use your Last.fm account’. At this point, switch
back to Giocoso running on your PC and press Enter to configrm that you’ve authorised Giocoso to
scrobble -and Giocoso will terminate with a confirmation that the scrobbling configuration data has
been successfully stored.

Incidentally, if you ever want to revoke Giocoso’s permission to scrobble Music, it’s easy to do: just
click your personal icon in the top-right of the Last.fm web page (after you’ve logged in), and click
Settings → Applications. Just click the ‘Disconnect’ button against an application to de-authorise it.

Anyway: that’s the scrobble configuration from Giocoso’s point of view now complete. Giocoso can
now scrobble correctly.

8.2 Getting Giocoso to Scrobble
Remember that Giocoso doesn’t scrobble by default, even when it’s been authorised to do so. You have to
manually tell Giocoso to do so, every time you run it. The command would be:

giocoso --scrobble

...so it’s not exactly difficult! If you forget to supply that extra parameter, however, you’ll see this sort of
message at the end of a ‘play’ of a composition:

Giocoso User Manual v1.0 Page 35

The ‘no scrobbling requested’ message is the clue that, though scrobbling has been configured, it wasn’t
specified at the time I launched this particular ‘run’ of Giocoso.

(If you instead get a ‘Scrobbling not configured’ message at the end of a ‘play’, it means Giocoso doesn’t
think you’ve ever tun it with the --scrobble-config parameter successfully. You need to have
success with that before any attempt at scrobbling can be made).

If you do manage to remember to add the --scrobble parameter to your command line when
running Giocoso, you’ll see this end-of-play message instead:

If remembering that --scrobble switch every time is too awkward, though, you can set an
environment variable, called GIO_SCROBBLE to a value of 1 in your .bashrc or whatever other file
you use to set you session environment variables. Here, for example, is a snippet from my own .bashrc:

Giocoso User Manual v1.0 Page 36

If GIO_SCROBBLE is set to 1, then Giocoso will automatically scrobble, even if the --scrobble
parameter is absent when it is launched. Setting that environment variable to 0 is the same as not
setting it at all: Giocoso reverts to its default behaviour of not scrobbling unless explicitly told to do so
on the command line when running the program.

In case you’re wondering: if you set GIO_SCROBBLE=0 (i.e., ‘no scrobbling, please’) and then run
Giocoso with the --scrobble parameter ...the run-time parameter ‘wins’ and Giocoso will scrobble. The
explicit run-time parameters always take precedence over generally-set environment variables.

8.3 How Giocoso Scrobbles
I want to end by mentioning that, once you’ve configured Last.fm to let Giocoso scrobble, and
remembered to tell Giocoso to scrobble… how it scrobbles is going to be rather unlike any other media
player on Linux that I know of!

Remember that Last.fm is ‘track-centric’, where Giocoso thinks in ‘whole composition’ terms? Well,
that difference shows when it comes to scrobbling!

If you play a 3-movement piano concerto, Giocoso won’t scrobble anything at all until the entire
concerto has been played to its conclusion. When the last bar of the last movement fades away, that’s
when Giocoso will scrobble all three tracks of the work at once. If you therefore interrupt a Giocoso ‘play’
half-way through (by pressing Ctrl+C), then nothing of that play will get scrobbled at all.

Essentially, Giocoso takes the view that if you walk out of a symphony half-way through, you haven’t
actually heard the entire symphony, so it shouldn’t record you as having listened to any of it! Classical
music doesn’t work that way… and neither should you!

If you run Giocoso with the --selections=x parameter, so that Giocoso plays x compositions in
sequence, one after the other, then Giocoso will scrobble each selection as it ends. It doesn’t wait until
the entire cycle of selections is complete before scrobbling things, in other words.

8.4 Scrobbling with Embedded Cuesheets
This may not apply to you, but some people (me included!) prefer to take the four movements of a
Beethoven symphony (say) and combine them into a single FLAC track -usually referred to in these
parts as a ‘superFLAC’. All four movements are present ‘within’ the single FLAC file logically, but it’s
physically a single file. Usually when you combine individual track FLACs into a superFLAC in this
way, you’d also embed a piece of information called a ‘cuesheet’ into the FLAC file at the same time.
The cuesheet ‘describes’ the superFLAC, indicating when its constituent ‘tracks’ begin and end.

Giocoso User Manual v1.0 Page 37

For example, here’s a cuesheet explaining what’s going on ‘inside’ a single FLAC that is the entire
Françaix piano concerto:

From this cuesheet, we can tell that the third movement begins 9 minutes and 39.02 seconds in from
the beginning of the piece. The fourth movement starts at 13-and-a-bit minutes in (so we can deduce
that the third movement lasts for around 3~4 minutes) and so on.

Anyway: the point is, if you get Giocoso to play this composition, it will play it without a problem…
but what should get scrobbled? A single record saying ‘he played the Françaix piano concerto’? Or four
scrobbles, saying ‘he played the first movement, then the second, then the third and finally the fourth’?

Well, Giocoso recognises that Last.fm is a track-centric website, so it will scrobble the four individual
movements, rather than just the one concerto -even though it’s only one physical file on disk. But as
I’ve already mentioned, Giocoso won’t scrobble anything at all until all four movements have been
played. So it’s a sort of compromise: yes, Giocoso acknowledges the “trackiness” of works, but no, it
won’t ever allow you to scrobble only parts of a composition!

In the specific case of this piano concerto, for example, this is what the Last.fm website for my account
shows -and as you can see, it displays 4 ‘tracks’, even though they’re 4 virtual tracks, derived from the
embedded cuesheet, rather than ‘real’ ones derived from the existence of separate physical files :

Giocoso User Manual v1.0 Page 38

You may notice that because Giocoso ‘delays’ scrobbling until the end of the work, the entire set of
‘parts’ of the work all appear to be scrobbled at the same time: the Françaix concerto lasts 29 minutes,
after all, so there is no way that all four movements could have all been played ‘2 minutes ago’ in real
life! But this is just what happens when Giocoso stores up all scrobbles for a work until the entire work
is complete: the scrobble time for all tracks (or ‘virtual tracks’, if we’re reading an embedded cuesheet)
is set to be the time when the last of them finished playing.

Summing up, then:

• Giocoso needs to be configured to scrobble (--scrobble-config)

• Giocoso needs to be instructed to scrobble (--scrobble)

• Giocoso will only scrobble when the playback of composition ends

• Giocoso will scrobble multiple tracks if your music is physically stored as one-track-per-
movement

• Giocoso will scrobble multiple tracks even if your music is physically stored as one-track-per-
composition, provided that it can find an embedded cuesheet that describes multiple
movements

• When multiple tracks are scrobbled, the scrobble time-stamp for all of them will be identical

Giocoso User Manual v1.0 Page 39

9.0 The Giocoso Database
Giocoso main reason for existence is its ability to randomise playback of parts of a large music
collection -but it can only do so if run with a database backend (otherwise, it just dumbly plays the
contents of a folder you point it at).

• That database has to be created with the --createdb run-time parameter.

• It is then kept up-to-date with changes in your music collection with the --refreshdb
parameter.

• It is thereafter used by Giocoso any time the program is run with the --dbname parameter.

It’s important to realise that creating a database doesn’t mean moving your physical music files
anywhere or altering them in any way. The database is a store of information as to where, on disk, your
music files can be found: it does not contain the music files themselves. Accordingly, the database is
small and compact, even after a very large music collection has been scanned: my 1.7TB music
collection is represented by a Giocoso database that is only 11MB big, for example.

The Giocoso database is a sqlite3 one (not MySQL, in case anyone was wondering). Sqlite3 is an open
source, compact, highly portable and performant relational database.

9.1 Creating a Database
To create a database in the first place, you must run Giocoso with the following style of command;

giocoso --createdb=mymusic --musicdir=/path/to/root/of/music-collection

The ‘createdb’ parameter takes as its value the name of the database you want to create. If you fail to
supply a name (i.e., if you just say “--createdb”, with no equals sign or parameter value), then a database
called ‘music’ will be created by default.

If the database name you supply already exists, you’ll be warned about this and told that no database
creation is possible and that you should probably instead be trying to ‘refresh’ the database which
already exists.

There is no limit to the number of databases you can create, though they must each be uniquely named,
and only one can be used for playback at a time. If you had classical and jazz music collections, for
example, and wished to keep them distinct, you could do two ‘createdb’ runs, naming each database
something like ‘classical’ and ‘jazz’, and you’d thereafter be able to play each type of music distinctly
with different play-runs of Giocoso using different --dbname parameters.

When you ask to create a database, you are required to supply a --musicdir parameter and will be
warned if you don’t. This is so that, once the database is created physically, the music files stored within
the supplied ‘musicdir’ can be scanned and have their metadata tags read for inclusion into the new
database’s tables. This scanning process can take quite a long time to start, so be patient. Once it has
started, however, you will be able to see the progress of the scan in the upper part of the program
display.

Giocoso User Manual v1.0 Page 40

The musicdir parameter should point to the ‘root’ of your folder tree within which your digital music
collection can be found. There is no practical limit to the ‘folder depth’ that Giocoso will descend to in
order to find FLAC files. In my own case, for example, one of my Beethoven symphonies can be found
in the following folder:

/sourcedata/music/classical/L/Ludwig van Beethoven/Symphonic/Jochum (LSO) Cycle/Symphony No. 3 (Jochum - 1976)/

...so you can see that’s quite a few folders ‘deep’: but the root of all my music is simply:

 /sourcedata/music/classical

...and that’s the folder I’d add as the value for the --musicdir parameter, and the symphony will be
‘discovered’ within that path perfectly well.

Should your desired musicdir path contain spaces, please wrap the entire thing in double quotation
marks. For example:

giocoso --createdb=music --musicdir="/my music/classical music"

Ideally, you wouldn’t have spaces in the ‘root’ of your music folder path like that, but if you insist on it,
Giocoso can at least deal with it, double quotes permitting.

9.2 Refreshing a Database
If your music collection is very static, you may never need to refresh the Giocoso database -but if you
acquire new recordings over time, or alter the metadata associated with existing ones, then you need to
keep the Giocoso database ‘in synch’ with the evolving state of your music collection by means of
performing a database refresh.

In a database refresh, the contents of the two principal tables are completely wiped and re-populated
from scratch by performing a brand new scan of your music folder and its sub-folders. There is no
‘differential’ scan with Giocoso: it does not do a quick scan whereby it detects only the changes since
the last scan, for example. It always wipes the database (but not your play history) and starts from
scratch.

A specific consequence of this way of working is that any ID numbers assigned to a particular
recording are likely to change over time: they are not invariant between refreshes.

Since a database refresh closely resembles a database (re)creation, the command syntax for performing
one is very similar to the way you create a database in the first place:

giocoso --refreshdb --dbname=music --musicdir=/path/to/music-collection

Again, it can take several minutes for the scan to begin when dealing with a large music collection, but
eventually the program will show you what folders it is processing so you get some idea of where it’s up
to and how much work there is still to do before completion.

Music files which exist on disk but are not incorporated into the Giocoso database cannot be played by
Giocoso in Random Play Mode -but it is always open to you to visit the files concerned in your distro’s
file manager and play them in Direct Play Mode.

Giocoso User Manual v1.0 Page 41

There is no hard-and-fast rule about how often to refresh your database: as mentioned, it really
depends on how ‘dynamic’ your music collection is. If you are acquiring half a dozen new recordings a
week, say, then maybe a weekly refresh might be in order; if it’s half a dozen a day, then maybe nightly
refreshes are a better fit. Personally, I schedule a nightly refresh at 2AM in my crontab file with the
following entry:

Refresh the main Giocoso database nightly at 2AM

--

0 2 * * * /usr/bin/giocoso.sh --refreshdb --dbname=main --musicdir=/sourcedata/music/classical

Remember to use the full path to the Giocoso script (i.e., /usr/bin/giocoso.sh) in crontab, rather than
relying on just ‘giocoso’, as that requires a PATH variable to work, and PATHs are seldom set correctly
in the context of a crontab job.

9.3 Table Structures and Methodology
In normal use, you do not need to know, nor care, about the inner structures of the Giocoso database -
though if you want to construct your own SQL reports and analyses of your music collection,
understanding its tables and their contents may be helpful. If you are not skilled in the ways of SQL,
however, you can ignore the next few pages: skip to ‘Accessing the Database’ further on!

The Giocoso database, when created, contains just five tables, as follows:

• musicdir: a one-row table that contains a record of the ‘source’ folder within which all music
files can be found, and the highest play number ever exported in a differential report

• plays: every time a composition is played to completion, a record is inserted into the PLAYS
table to record the date, time, composer, composition, genre and duration

• recordings: populated after the music collection is scanned as part of a createdb or a refreshdb
operation. One row represents an entire composition, with details of composer, genre and total
duration.

• sqlite_sequence: an internal table that records the unique ID numbers given out to recordings,
and plays when those tables are populated

• tracks: a table that stores one row per FLAC file discovered during a scan of a music folder
during createdb or refreshdb operations. A four movement symphony will be represented by
four rows in the tracks table, therefore.

Note that a scan of a music collection only directly populates the TRACKS table, where one row
represents one physical FLAC discovered during the scanning process.

The RECORDINGS table is populated by aggregating the TRACKS records, grouping by unique
composition name. A row in the RECORDINGS table will thus represent a four-movement symphony
by a single row, with its aggregate duration being the sum of the durations of each of the files that
belong to that symphony. The metadata tags (including album art) associated with the first file is
assumed to apply in the aggregate to the ‘whole composition’. Thus, if it happened that you’d tagged
track 01 as being by ‘Beethoven L’ and the other three tracks as being by ‘Ludwig Beethoven’, the entire
composition would be attributed in RECORDINGS to ‘Beethoven L’.

Giocoso User Manual v1.0 Page 42

When making a choice of something to play, Giocoso selects from the RECORDINGS table, never the
TRACKS. It doesn’t even display per-track data, so the contents of the TRACKS table is really
irrelevant to Giocoso’s operation immediately once a scan of the music collection has been completed.

Put another way, if you run Giocoso with --composer=xxxx or --genre=yyyy parameters, the table
being queried to find music by a particular composer or belonging to a particular genre is always the
RECORDINGS table.

When making a random selection of something to play, Giocoso makes two queries of the
RECORDINGS table, in fact. First, it “selects distinct composer from recordings” so that it essentially
produces a ‘virtual table’ of composers, where each composer is represented by a single row. That
means every composer has an equal a chance as any other to be selected. It therefore makes no
difference if you own 4000 Bach recordings and only 2 by James Macmillan: when you select distinct
composer, you’ll end up with 1 row each for both Bach and Macmillan and (crucially) each is as likely
as the other to be selected.

Once a composer has been randomly selected, Giocoso than makes a second query of the
RECORDINGS table to find any music by that composer, and chooses one row from available
candidates. That then provides it with the ‘DIRNAME’ (i.e., the directory name or full path) to where
the music associated with that composition can be found on hard disk. It then proceeds to play the
physical files found in the location indicated.

The TRACKS table has no indexes, since it is not queried after it has been used to populate the
RECORDINGS table. All other tables have a primary key on an auto-incrementing ID column (that is,
the schema uses synthetic primary keys throughout). Importantly, this ID is not invariant. At each
database re-scan, the TRACKS and RECORDINGS tables are completely cleared and re-populated
afresh. This means a recording may acquire a different ID from the one it had before the database
refresh. The ID is therefore not to be used to indicate anything of permanent significance.

Apart from the ID primary keys, the RECORDINGS table has secondary indexes created on a
combination of composer+duration columns; and on the dirname column.

Note that the PLAYS table is never cleared. No matter how often you re-scan your music collection, the
PLAYS table is left intact, so that it represents the accumulation of all plays made over time. Each new
play is auto-assigned a synthetic primary key ID number: this remains the ID of that play for the life of
the database, but has no relation to any similar-looking ID stored in any other table. (It does not
represent a ‘composition name’ across all tables, for example).

9.4 Schema Description
The schema design uses no foreign key relationships: each table is entirely standalone and independent
of the others (though the content of RECORDINGS is directly derived from TRACKS, of course).

The following screencaptures attempt to show the entire Giocoso schema (the database name will
depend on what parameter is supplied to the --createdb=xxxx parameter).

Giocoso User Manual v1.0 Page 43

MUSICDIR

PLAYS

RECORDINGS

TRACKS

INDEXES

A textual representation of the schema is available from within the sqlite command line shell, which
can be accessed from a terminal session with the following commands (which assume the database is
named “main”, and thus exists as a file called main.db within the standard Giocoso folder:

Giocoso User Manual v1.0 Page 44

cd $HOME/local/share/giocoso
sqlite3
.open main.db
.tables
.indexes
.schema
.quit

(It is the .schema command that will display the SQL code needed to re-create the schema completely)

9.5 Accessing the Database
The PLAYS table can be exported (to other databases, or to spreadsheets and so on) using the
--report runtime parameter.

The RECORDINGS table can be queried in summary form using the --stats runtime parameter.

Since the Giocoso database is a standard Sqlite3 database, it can be queried at any time using standard
(and free/open source) tools such as the DB Browser for Sqlite.

The standard Sqlite3 command line shell can also be used to query the Giocoso database directly,
independently of Giocoso itself.

Do please note that though the database is configured to run in ‘Write Ahead Logging (WAL) mode’,
such that a reader shouldn’t block another reader, nor a writer a reader, if you are accessing the
database at the same time as Giocoso is trying to record a fresh ‘play’ in it, unexpected results may
occur. It is also generally not a good idea to perform your own inserts, updates or deletes on any part of
the Giocoso database using external tools: corruption to the database (and hence the loss of the
PLAYS history) may occur if you try.

9.6 Backing up the Database
It is important that you back up your Giocoso database: the PLAYS history cannot be re-generated
should anything befall the database (such as internal corruption). The database is physically stored as a
single file, called ‘database-name.db’ in the $HOME/.local/share/giocoso folder. The fullstop
(period) in front of the ‘./local’ bit of that path means the folder is hidden: you may need to turn on
‘show hidden files’ in your browser before you can navigate to it. It is probably a good idea to make sure
backups are done to a non-hidden folder on your backup device, so that you can find it again easily if
you need to! A command such as:

cp $HOME/.local/share/giocoso/* /backup/

...should be sufficient to capture the entire Giocoso database components and make them easily visible
in the backup directory.

Bear in mind that you’re backing up the entire database really only because the PLAYS table cannot be
reconstructed. If you play music frequently, therefore, the frequency of your backups needs to be
higher than if you only play music occasionally (and thus only update PLAYS occasionally). Personally,
I do a nightly backup of my Giocoso databases with the following crontab entry:

Giocoso User Manual v1.0 Page 45

https://sqlitebrowser.org/

Nightly backup of Giocoso at 4AM

--

0 4 * * * /usr/bin/rsync -avh --delete $HOME/.local/share/giocoso/

/home/hjr/Documents/Backups/Giocoso_Backups/

The last line is actually one continuous line, but wraps here for formatting reasons. Rsync is used rather
than a straight copy so as to be sure that the backup folder contains only one copy of the database,
overwritten nightly. I should perhaps mention a backup from one local drive to the same local drive
wouldn’t really be a lot of use in the event of that hard drive failing! Fortunately, in my case, the initial
Giocoso backup destination is itself backed up multiple times to multiple remote devices frequently, so
that’s not a consideration here!

9.7 Recovering the PLAYS table
The RECORDINGS and TRACKS tables are, functionally, replaceable: if anything happens to them,
they can simply be re-built or re-populated by re-scanning your music collection. But the PLAYS table
is much more of a problem: lose that data, and it’s gone for good.

Fortunately, Giocoso allows you to re-load plays into a database from which the originals have, for
whatever reason, been lost, using the --importplays=xxxx run-time parameter (where ‘xxxx’ is
the path and filename to a backup copy of your database, taken before the data loss occurred).

For example: let’s say I have just created a new and mostly database called “music”. I have a good
backup of my old database which was called “main” -and thus the file containing it was called
‘main.db’. This command extracts the PLAYS from the old ‘main’ and loads them into the new ‘music’
database:

giocoso --importplays=$HOME/.local/share/giocoso/main.db --dbname=music

That command produces the following output:

Continue using the new database to play more music and the new play records will be added to those
rescused from the old database: the continuity of your plays will not be interrupted (much!). The plays
are not deleted from the old database file, by the way: they are merely copied to the new one.

Note that this is also the way you can transition from using the earlier AMP program (Absolutely
Baching Music Player) to Giocoso without losing the PLAYS already recorded in AMP: simply point
the --importplays parameter at the old AMP database file and its plays will come across to the new
Giocoso one without much effort.

Giocoso User Manual v1.0 Page 46

10.0 Run-Time Parameters
Running Giocoso in Random Play Mode (i.e., with a database) allows you to get quite creative in the
things you can ask Giocoso to play for you: something that’s a ballet conducted by Solti that takes less
than 50 minutes to play? Not a problem. Something that’s not an opera, but was written by Wagner?
Check. Something that’s an opera, but doesn’t have Giuseppe di Stefano singing and which lasts no
more than 2 hours? Fine.

You get the idea, I hope: you can pile on the filters and selection criteria so that Giocoso starts to play
quite focussed or tailored types of music, depending on your mood for the day!

Or you can just forget all that cleverness and ask Giocoso to play ‘something, anything’.

The way you decide to run Giocoso is really up to you -but getting subtle about it requires that you
master the use of the various ‘run-time parameters’ (sometimes called ‘switches’) that are available to
control its behaviour. These all take the form of double-dash keywords appended to the basic ‘giocoso’
command, and (depending on the keyword) assigning a value to the keyword.

There are currently a whopping 36 run-time parameters that
you can supply when launching Giocoso, using a double-dash
prefix.

That sounds like a lot, but they can be thought of as existing in
four distinct ‘groups’, some of which are going to be rarely used
(or even used only once).

Just 15 parameters control the sorts of things you are going to
want to specify quite regularly. These are detailed in Section
10.3 below, as Selective Parameters.

A handful of parameters control the look-and-feel of the
program, which you may decide you never need to alter
anyway: see Section 10.2 below: Appearance/Behaviour
Parameters.

A further half-dozen or so parameters are quite important to use semi-frequently. They control things
like checking and getting Giocoso updates, or creating and refreshing a database of music. These are
listed in Section 10.1 below: Initialization Parameters.

Finally, there are a bunch of parameters that allow you to report on the state of your music database.
You may never need or want to know how much of it you’ve played, or what the continuous play-time
of the entire collection is… but if you’ve ever wondered, Section 10.4 Reporting Parameters will be
useful.

In the following sections, I’ll simply list the parameters in a table, with a very summarised description
of their purpose. I’ll then explain them in much more detail after the table listing.

Please note that there’s one parameter I do not discuss here, but in Appendix C, for reasons that
appendix hopefully makes clear.

Giocoso User Manual v1.0 Page 47

10.1 Initialization Parameters
These parameters are usually only used once (or infrequently), as part of post-installation configuration
or tailoring.

--createdb=xxxx Instruction to create a database, with xxxx
as the database name.

Requires --musicdir parameter
(otherwise, it doesn’t know
where to scan to populate the
new database).

--refreshdb Instruction to rescan a music collection
and re-populate whatever database is
specified with the accompanying --dbname
parameter

Needs --dbname. Also needs
--musicdir, otherwise it won’t
know what files to re-scan for
changes.

--musicdir=xxxx Specifies the physical location of a folder
tree structure containing music (FLAC)
files. Needs xxxx to represent a full path to
the root of the collection.

Needs to be present when
creating a new database and
when refreshing the database.
Not needed in regular play
activities.

--importplays=xxxx Instruction to extract the PLAYS table
records from another database and copy
them into the database specified with the
--dbname parameter. Basically allows old
PLAYS to be moved between databases
(including old AMP ones). Allows recovery
of PLAYS from backup.

Needs the full path and filename
to the original AMP database,
which is usually found within the
$HOME/.local/share folder.
Also needs the --dbname
parameter so we know what
database to load the data into.

--integrate Instruction to create appropriate files that
enables right-click play of folders in
Giocoso from your distro’s GUI file
manager

Only needs to be run once. See
Section 7.0 for details of what
happens and the limitations on
various desktops/distros.

--scrobble-config Instruction to initiate the authorisation
mechanism that lets Giocoso scrobble its
plays to Last.fm

Only needs to be run once. Needs
a valid last.fm account before you
start. See Section 8.0.

--checkver Instruction to check to see if a newer
version of Giocoso has been released and
to fetch and install it if one is found.

Will prompt for sudo privileges if
a new version is found (as sudo is
required to copy relevant files to
privileged directories).

--licence
 --license

Instruction to display the GPL v2 text
under which Giocoso is licensed.

US and British spelling variants
both work the same

Giocoso User Manual v1.0 Page 48

These ‘administrative parameters’ tend to be used only once -or, at least, very infrequently. Usually,
you’d use them immediately after a fresh installation of Giocoso, because they setup and configure
things which enable much of Giocoso’s functionality. In the sections that follow, I remove the leading
‘--’ before the parameter name for aesthetic reasons: the double-dash is needed when actually using the
parameters, though!

10.1.1 Createdb
The --createdb parameter triggers the creation of a Sqlite3 database, with a name that matches the
parameter value supplied. If you said --createdb=mymusic, for example, then the database ‘mymusic’
would be created and a physical file, stored in $HOME/.local/share/giocoso, named mymusic.db
would be created.

Since the database name becomes a physical file name, it’s a good idea to make your database name a
simple, short, one-word value without spaces. Good names might be, for example, ‘music’ or ‘main’ or
‘overflow’. A bad name might be something like ‘My main database’, because all those spaces might
cause trouble further down the line. If you insist on using spaces within a database name, you’ll have to
wrap the entire parameter within double quotation marks, so you’d have to end up saying something
like ‘--createdb=”My Main Music Database”’.

I would recommend not using capital letters either: Linux filesystems are case-sensitive, so if you mix
cases in the database names, you’ll always have to remember the precise combination of upper- and
lower-case letters for all future uses. Sticking to one-word, lower-case database names makes life easier
all round!

The --createdb parameter always has to be used in combination with the --musicdir parameter. That’s
because immediately after creating the database file, Giocoso scans the musicdir provided to populate
it with data. If it doesn’t know where to scan, because you didn’t mention a musicdir, database creation
will fail, with an appropriate error message displayed.

The full database creation command would therefore be something like:

giocoso --createdb=music --musicdir=/music/classical

This will create a database file called $HOME/.local/share/giocoso/music.db and then scan the entire
contents of the /music/classical folder to populate that new database.

Note that you can create as many databases with Giocoso as you like. If you have classical, jazz and ‘not
very good’ music in distinct folder hierarchies, for example, you can easily create three different
databases called (perhaps) ‘classical’, ‘jazz’ and ‘overflow’. You can later choose which database to
source a ‘play’ from by running Giocoso with a particular value for the --dbname parameter (as we’ll
see shortly).

10.1.2. Refreshdb
A static music collection may be scanned just the once, as part of the createdb process, and need never
be scanned again: it’s static, after all, and thus not changing, so the snapshot of it taken at database
creation time is a true picture of that collection.

Giocoso User Manual v1.0 Page 49

If , however, you are still acquiring new music to add to your collection, this one-off ‘snapshot scan’ of a
folder structure at database creation time will not meet your needs: if the collection is changing, the
database contents need to be periodically refreshed to make it keep up with those changes, which is
why you’d use the --refresh database parameter in a command such as:

giocoso --refreshdb=music --musicdir=/music/classical

This triggers Giocoso to take a fresh look at the contents of the folders contained within the folder
again specified by the --musicdir parameter value, and to re-load the database with details of whatever
FLAC files it now finds there. Depending on how often you are adding to your music collection, you
may need to schedule a database refresh using cron maybe nightly, maybe weekly -or, at least, at
whatever frequency you think is required to keep the Giocoso database useful. Giocoso cannot
randomly select to play recordings of whose existence it is unaware, anyway.

My own crontab file has this entry, for example:

Refresh the main Giocoso database nightly at 2AM
--
0 2 * * * /usr/bin/giocoso.sh --refreshdb --dbname=main --musicdir=/music/classical

(Remember that in crontab, one tends to specify the full path to executables, so here it’s
/usr/bin/giocoso.sh, not just ‘giocoso’). You can see that I refresh my database nightly at 2AM, when
no-one’s around to see it happen!

Note that a database refresh clears the existing content of the database tables and re-populates them from
scratch. Giocoso does not, in other words, only ‘add in the new stuff discovered’. It adds in everything,
starting from a clean slate. (Play history is always preserved, however!). This means that a refresh
database can take quite a long time to complete, since it’s scanning the whole music collection again,
not just the new additions to it. Practically, it also means that recordings acquire different ID numbers
in the database at different times. A recording of Britten’s Peter Grimes might be assigned ID 1583 one
day and become recording ID 1586 the next, because 2 new acquisitions in the ‘A’ composers have
bumped it down the list. Never rely on recording IDs being invariant between refreshes, basically.

10.1.3 Musicdir
As already mentioned, the --musicdir parameter takes a value of the full path to the root of a folder
tree containing a set of FLAC files. It is required for database creation and refreshes.

In case it’s not obvious, you can only specify one music folder when creating or refreshing a database, so
the path supplied must be ‘high up enough’ to allow the collection scan to capture all appropriate
music in one pass.

If you had a folder structure like this, for example:

/Benjamin Britten

/Classical Music/Beethoven

/Gustav Mahler

Giocoso User Manual v1.0 Page 50

...it would be difficult to have all three composers included in one database unless you said your
musicdir was ‘/’ (the root folder)… and a scan of your system’s root folder is likely to be long and
painful!

Better would be something like this:

/music/Benjamin Britten

/music/Classical Music/Beethoven

/music/Gustav Mahler

...for now you can scan ‘/music’ and get all three composers collected in one hit. It doesn’t matter for
these purposes that Beethoven is one folder further ‘down’ than the other two: Giocoso will find music
within a top-level folder no matter how far down the ‘tree’ it might be. There are aesthetic reasons for
wanting a consistent folder hierarchy and structure, however, but core playback functionality is not
affected by such deviations.

10.1.4 Importplays
Moving your play history between databases is probably not something you’ll do very often, but the
--importplays parameter allows you to do it. The parameter takes a full path and filename argument,
pointing to the Sqlite database containing the source play history. You must also supply a --dbname
parameter so we know what database is to be the destination of the import process.

Source databases must be either Giocoso databases or AMP ones (AMP is the Absolutely Baching
Music Player, which was the prototype for Giocoso: my own AMP play history is now over 6 months
long and I didn’t want to lose it when transitioning to Giocoso -so, being able to pull it out of AMP’s
database and into Giocoso’s was very important to me).

Since the source database can be another Giocoso database, this is the parameter you’ll want to use to
perform restores of a play history from a backup of your main Giocoso database. The command would
be something like:

giocoso --importplays=/backups/mymusic.db --dbname=mymusic

There is nothing to stop you running this sort of import process multiple times -but if you do, the
freshly imported records merely duplicate the records you previously imported. Each new import will
double the number of plays being stored in Giocoso’s PLAYS table. To clear them, you’d have to
physically delete the Giocoso database, create a new one and do a single, fresh import.

10.1.5 Scrobble-config
Giocoso is a ‘scrobbling FLAC player’, meaning that it can transmit a record of what it plays to Last.fm,
where a web-accessible play history can be built up over time. For it to be able to scrobble regularly,
however, Giocoso needs to be put through a one-off authorisation process. The --scrobble-config
parameter is used to run that authorisation process. See Section 8.1 for details. Once you have run the
scrobble-config process, you need never run it again.

Giocoso User Manual v1.0 Page 51

10.1.6 Checkver
The --checkver parameter is something you will want to run infrequently, but regularly (say, once a
week or once a month). The command:

giocoso --checkver

...simply forces Giocoso to check the Internet to see if a more recent version of the program available.
If there is, Giocoso will offer to fetch and install it for you. If there isn’t, it will simply say ‘you’re
already running the latest version’.

Should a more recent version be discovered, you will be asked whether you want it fetched and
installed. If you agree to do so, you will be prompted to supply your sudo password (because installing
Giocoso involves writing into the /usr/bin folder, which ordinary users cannot do, but which root can).
The upgrade will always overwrite the program files involved, but will never alter in any way your music
database. Giocoso upgrades are therefore quite safe (though you’re still always recommended to take a
backup of your database before doing one, just in case!)

It is important to perform this version check reasonably often, because new software releases fixing
bugs and adding new functionality are being continuously made, with no fixed schedule.

10.1.7 License/Licence
The --license parameter can be spelled in either US or British variants, but no matter how you spell it,
its presence causes the full text of the GPL v. 2 license to be downloaded and displayed within the less
program (meaning that you can up- and down-arrow or PgUp/PgDn to scroll your way through it in
either direction). Press ‘q’ to quit the display and exit back to the command line. The parameter has no
real utility, other than to conveniently display the full text of the license under which Giocoso is made
available. It’s not an option you’re going to use very often, I think!

Giocoso User Manual v1.0 Page 52

10.2 Appearance/Behaviour Parameters
These parameters tend to affect the way the program looks or behaves, at a fairly high level. Many
people will never need to use any of them at all… but if you do decide to use any of these parameters,
you will probably end up using them every time you run Giocoso -perhaps via an alias (see Section 11.5
for a discussion of the use of aliases to make running Giocoso easier).

--displaycolour=
--displaycolor=

light, dark, neutral,
standard, classic

Alters the colour display of the text. The default
is ‘standard’

--artsize= small, medium, large,
none

If album art is displayed, what size to display it
at. Small=300x340. Medium=450x500.
Large=900x960. None switches art display off.
The default is ‘medium’.

--captiontext=xxxx Sets colour of caption
text displayed with
album art

Defaults to white. 681 alternatives are available,
provided the supplied value matches one of the
colours displayed with --listcolours.

--captionbackground=xxxx Sets the background
colour of the caption
displayed with album art

Defaults to black. 681 alternatives are available,
provided the supplied value matches one of the
colours displayed with --listcolours.

--listcolours
--listcolors

Lists valid colour values
for use with caption
options

Colours are listed inside the ‘less’ program, so
it’s scrollable in either direction. Press q to quit
back to command line.

--scrobble Instruction to scrobble Submits a ‘play’ to last.fm on play-completion if
supplied. The default is not to scrobble.

--device= default or some other
hardware value, system-
dependent

The audio device to stream output to. The
default is ‘default’. Knowledge of specific
hardware addressing required to supply any
other valid value

--editor Instruction to edit the
excludes.txt. Present
only in version 1.07 and
above.

Opens excludes.txt in whichever text editor is
set as the value of the EDITOR environment
variable. The contents of the excludes.txt
determines whether certain composers’ music
should be excluded from random selection. See
Section 5.2 for details of the excludes
mechanism.

Giocoso User Manual v1.0 Page 53

https://absolutelybaching.com/wp-content/scripts/giocoso-1.05.sh

10.2.1 Displaycolour/Displaycolor
The --displaycolor parameter can be spelled in US or British variants, and takes one of four possible
values, with ‘standard’ being the default. Any value passed that isn’t ‘light’, ‘dark’ or ‘neutral’ is silently
interpreted as ‘standard’.

The standard colour scheme involves the use of cyan, green, red and yellow text: users with colour
perception issues may prefer trying one of the other three values, which essentially turn the display
into monochrome white (“light”), monochrome black (“dark”) or monochrome yellow (“neutral”).

Note that the various colour schemes might not always display correctly unless you also configure the
appearance of your terminal session. If you ask Giocoso to display ‘dark’, for example, when your
terminal profile already mandates a dark appearance, you’ll be basically looking at black text on a black
background!

Here are screenshots of the various colour options available to you via the use of this parameter.

First, standard:

Broadly speaking, the standard display uses Green to display static program text; Yellow to display
dynamic text whose content will depend (maybe indirectly) on something the user supplied; Red to
display error messages or alert condition warnings; and Cyan (light blue) to display static text that
depends on user input (such as the name of the database in use).

Now, Light:

Giocoso User Manual v1.0 Page 54

Everything becomes white monochrome text, basically, so that there’s no difference between program
text, user information and error messages.

Now Dark:

Here, I’ve altered the Konsole theme to be ‘Solarised Light’… and now you can see that the dark
Giocoso theme results in monochrome black text on a now-white background.

Finally, here’s Neutral:

Giocoso User Manual v1.0 Page 55

As you can see, this is essentially monochrome yellow -the idea being that yellow-on-black is less tiring
on the eyes than plain black-on-white or white-on-black.

In earlier versions of Giocoso, the default colour scheme used a dark blue (sort of a Royal Blue) to
display static text whose value depends on user selections or input. The dark blue was so dark, however,
that reading it could sometimes be a problem. From version 1.05 onwards, the dark blue became the
lighter cyan colour you see in the screenshots for the ‘standard’ (and default) colour scheme. Should
you still wish to use the darker blue, however, you can do so by specifying the --classic colour
scheme. Apart from the dark blue/cyan switch, the classic colour scheme is identical to the current
‘standard’ one.

10.2.2 Artisize
Giocoso is able to display embedded album art (that is, artwork which has been added into the
PICTURE tag of a FLAC file). It cannot display artwork which is external to the music file (so, it does
not process folder.jpg files, for example).

By default, if album art is detected, it will be displayed at 450x500 pixels, usually in the lower-middle of
your screen (though the precise location of the display window can be a little unpredictable, depending
on what else is running on your PC at the time a new folder of music begins to be played!) This
corresponds to setting the --artsize parameter to a value of medium. The parameter also accepts values
of small (300x340) or large (900x960). Any other value you supply is interpreted as medium.

Whatever the size of the album art display you choose, an additional 40, 50 or 60 pixels is bolted onto
the bottom of the album art proper, with a black background (by default) and the first 80 characters
resulting from the combination of the last name of the ARTIST tag plus the ALBUM tag, displayed in
white text (by default). Just by glancing at the album art display, therefore, you should be able to see
exactly what piece is playing, and who the composer is… and if the album art is helpful rather than just
‘artistic’, you’ll probably also know the performers, conductor and so on.

Giocoso User Manual v1.0 Page 56

The album art window, once displayed, can be moved around by mouse clicking-and-dragging as you
like; you can also shut the artwork window down at any time, though you will not be able to re-open it
afterwards. Closing the artwork display won’t stop music playback, but terminating music playback (by
pressing Ctrl+C in the Giocoso main window) will immediately close the album artwork window.

The parameter can also be set to a value of none. This prevents any artwork at all being displayed.

10.2.3 Captiontext
As mentioned above, if Giocoso displays album art, it will grab the last of the names listed in the
ARTIST tag, join that to the ALBUM tag of the first FLAC file found to play, and then grab the first 80
characters from the combination. The result will then display below that art work -and it will default to
displaying that text in white lettering. If you would prefer a different colour, then you can tell Giocoso
what colour to use with the --captiontext parameter.

Valid values for this parameter can be listed with the --listcolours parameter (see below, Section
10.2.5). The parameter is, however, case insensitive, so whether you say --captiontext=cyan or
--captiontext=CyAn, you’ll get cyan-coloured text. If you supply an invalid colour (and there are 683 of
them to choose from!), then the parameter defaults back to plain white.

10.2.4 Captionbackground
Just as you can alter the colour of the album art caption text (see Section 10.2.3 above), so you can alter
the colour of the caption background with the --captionbackground parameter. It defaults to being
black, but this parameter allows you to specify an alternative colour, providing that the parameter
value is a colour that is amongst those listed when you use the --listcolours parameter (see below,
Section 10.2.5).

The parameter is case-insensitive, so if you say the background should be DarkGreen or darkgreen or
DaRkGrEeN, you’ll get a dark green background just fine. Any invalid colour names, however, are
silently defaulted back to plain black.

To give you an idea of what’s possible, here are two displays of album art+caption, one using
--captiontext=mediumpurple and --captionbackground=slateblue; the other used
--captiontext=yellow and --captionbackground=crimson. I don’t say these are particularly good colour
combinations! But they at least give you an idea of the range of what’s possible and the sort of visual
consequence of your choice(s) you can expect:

Giocoso User Manual v1.0 Page 57

Note that if Giocoso spots you’ve specified the same colour for the text and the background, it will
silently give you white text on a black bacground: it’s not going to display just a coloured bar with no
apparent text in it! Do note, however, that some distros (notably Ubuntu and its derivatives) default to
not permitting text to be converted to images -and if you fall foul of that restriction, you definitely will
end up with a coloured bar with no apparent text in it.

If that happens to you, you will need to relax the security provisions of the
/etc/imagemagic-6/policy.xml file (though your particular distro may introduce upper case characters
into the name, and the version number (6) might vary, too).

The specifics of this (should you need it) are discussed on my website at the following address:
https://absolutelybaching.com/giocoso-on-kubuntu/

10.2.5 Listcolours
To use the --captiontext and --captionbackground parameters (see above, Sections 10.2.3 and 10.2.4)
successfully, you must supply valid colour values. There are 683 distinct colour ‘names’ to choose from:
the --listcolours parameter (also --listcolors if you prefer that spelling!) will display a list of all valid
colour names inside the ‘less’ text display program -meaning that you can arrow up and down the list in
either direction one line at a time, or PgUp and PgDn through it rather more quickly.

When you are ready to quit the display of colours, just tap the letter ‘q’. You will be returned to the
command prompt from which you originally launched Giocoso.

10.2.6 Scrobble
The --scrobble parameter controls whether or not Giocoso should transmit details of what has just
been played to the Last.fm website. Doing so builds up a web-accessible history of what music you
listen to over time. This can be quite helpful in allowing you to spot listening trends (and maybe
prompt you to modify your listening habits in various ways). It is strictly optional to do, though, and

Giocoso User Manual v1.0 Page 58

https://absolutelybaching.com/giocoso-on-kubuntu/

Giocoso will not scrobble your listening habits unless you explicitly request it to do so by including the
--scrobble parameter on the command line as you launch Giocoso.

The subtleties of scrobbling are more fully described under Section 8 of this document. Be aware that
even if you have configured to scrobble (that is, authorised Giocoso as a program that is allowed to post
to your Last.fm account), it will not do so unless the --scrobble parameter is present on the command
line as you launch Giocoso. Giocoso’s default behaviour is not to scrobble, in other words, even though
all necessary prerequisites may allow it to do so.

10.2.7 Device
The --device parameter is used to direct Giocoso’s audio output to a specific hardware device, provided
the device name is known. If not specified, the default device is simply ‘default’ -and this will work for
most Linux environments I know of. If, however, you have external DACs or other complex audio
hardware configurations, you may need to control more precisely where Giocoso directs its output.

In my case, for example, I run Giocoso with the command:

giocoso --dbname=main --device=plughw:2

...meaning that I am directing the playback to ‘plugin hardware device with address 2,0’ (which
happens to be my USB-attached external DAC). How did I know that ‘plughw:2,0’ was the correct
device identifier to use?

Well, it isn’t terribly easy, I’m afraid. In the first place, I issued the command:

cat /proc/asound/cards

...and this output the following:

0 [PCH]: HDA-Intel - HDA Intel PCH
 HDA Intel PCH at 0xfb320000 irq 54
1 [NVidia]: HDA-Intel - HDA NVidia
 HDA NVidia at 0xfb080000 irq 55
2 [E30]: USB-Audio - E30
 Topping E30 at usb-0000:06:00.0-1.2, high speed
3 [C920]: USB-Audio - HD Pro Webcam C920
 HD Pro Webcam C920 at usb-0000:05:00.0-3, high speed
4 [webcam]: USB-Audio - Full HD webcam
 SunplusIT Inc Full HD webcam at usb-0000:06:00.0-1.4.4, high speed

That at least told me that if I wanted to direct sound output to my Topping E30 USB-attached external
DAC, I’d have to direct output to hardware device 2.

Generally, you’ll use a plughw type of address with Giocoso. Therefore, if you know your device is
number 2, it’s a fairly good bet that the correct value for the --device parameter is going to be
plughw:2. If you have more than one device on an output, you’ll need to add a ‘,1’ or a ‘,2’ to distinguish
them, but that’s not the case in the above output for me -hence, plughw:2 is the correct value for me
and my hardware setup. But note that device IDs can change as you plug things in and out over time!
So don’t get attached to any specific device ID, but get comfortable with the method of determining
what the correct ID to use should be.

Giocoso User Manual v1.0 Page 59

The default value for this parameter is usually fine. You only need to mess around with --device if you
have a complex audio setup and/or Giocoso seems not to be handling your configuration correctly.

An environment variable, called GIO_DEVICE= can be set (in .bashrc, or any other environment-
setting file), to an appropriate value so that you don’t have to keep remembering to supply the
parameter on the command line every time you want to launch Giocoso. That is, if I were to add the
line:

GIO_DEVICE="plughw:2,0"

...to my .bashrc (and log out and log back in so that the new value is picked up), I’d be able to launch
Giocoso with the plain command:

giocoso --dbname=main

….and my audio output would work fine, via my DAC, even though --device has not been specified at
run time. If the environment variable is set to X, and a run-time --device parameter has been set to Y, it
is the run-time parameter Y that takes precedence: it overrides the environment parameter for the
duration of that run.

10.2.7 Editor
Giocoso in random-play mode will ordinarily select a composer at random and then randomly select a
composition by that composer for play. If, however, a text file called excludes.txt is present in the
$HOME/.local/share/giocoso folder, that file will be read before making a random selection of a
composer. If a composer’s name is found in that file (one name per line), then that exact spelling of the
composer’s name is completely excluded from further random selection. The exclusion is automatic
and permanent, until such time as the relevant line in the excludes.txt is removed.

As a text file, the excludes.txt can be edited by any text editor with which you are familiar. Gedit, Kate,
Notepadqq… you name it, any one of them can do the job.

However, starting in version 1.07 and up, Giocoso can be run with the --editor run-time parameter and
the excludes.txt can then be edited directly in whatever text editor the $EDITOR environment variable
is set to. On many distros, by default, that will mean that it’s opened in vi; in most others, it will default
to being edited in nano. Whatever the EDITOR variable is set to can, of course, always be changed
(usually by setting it in the $HOME/.bashrc file).

Once you have edited the document in whatever editor is selected for the job, you can save and close
the file, and Giocoso will itself quit, without attempting to play music.

The --editor run-time parameter is therefore merely a convenience: it means that editing a file Giocoso
uses to determine what music to play randomly can be done from the same command line as you use to
run Giocoso as a music player. If you prefer to open the excludes.txt as a separate exercise entirely,
however, that older approach continues to work just fine, too.

Giocoso User Manual v1.0 Page 60

10.3 Selective Parameters
This set of parameters is the largest -and the ones which you’ll most commonly use every time you run
Giocoso. They control what music Giocoso plays, and the way it plays it. In the following table, where I
say a parameter takes a value of xxxx, I mean it accepts textual entries; where I say it takes a value of y, I
mean that it takes a numeric argument.

--dbname=xxxx The name of the database to use to make
music selections.

Must already exist

--selections=y The number of music plays to perform before
stopping

Default is 1. Maximum is 99.
After the number of selections
has been played, Giocoso quits
and needs to be relaunched from
the command line for any further
plays to take place.

--pause=y Introduces a pause of y seconds between
consecutive plays of music.

The default pause is 10 seconds.
There is no limit to this
parameter’s upper value, but
values less than zero are silently
reverted to the default 10
seconds.

--timebar=y The number of hours during which a
composer who has had any piece of music
played cannot have further music played.

Default is 6, maximum is 999
(which is about 42 days). The
intention is to stop the same
composer being played
repeatedly within a short
timeframe. 0 disables the feature
entirely.

--genre=xxxx A filter to force the random selection of music
that has been tagged (in the GENRE tag) as
belonging to a specific genre.

The supplied parameter is
wildcarded on the outside so a
value of ‘on’ would match
concerto and symphony, for
example. Case insensitive.

--composer=xxxx A filter to force the random selection of music
that has been tagged (in the ARTIST tag) as
having been written by a specific composer.

The supplied parameter is
wildcarded on the outside, so a
value of ‘ga’ woud match Elgar
and Havergal Brian, for example.
Case-insensitive.

Giocoso User Manual v1.0 Page 61

--performer=xxxx A filter to force the random selection of music
that has been tagged (in the PERFORMER
tag) as being performed by a particular
‘distinguishing artist’ (which will usually be
the conductor, or the chamber ensemble, etc)

The supplied parameter is
wildcarded on the outside, so a
value of ‘ol’ woud match Solti and
George Malcolm, for example.
Case-insensitive.

--comment=xxxx A filter to force the random selection of music
that has been tagged (in the COMMENT
field) with a particular name (or part-name)

The supplied argument is
wildcarded on the outside, so a
value of ‘=cal’ would match
Maria Callas and Pascal Devoyon
Case-insensitive.

--composition=xxxx A filter to force the random selection of music
that has been tagged (in the ALBUM field)
with a particular name (or part-name)

The supplied argument is
wildcarded on the outside, so a
value of ‘gri’ would match Peter
Grimes and The Pilgrim’s
Progress. Case-insensitive.

--recordnumber=y A filter to force the play of a specific,
uniquely-numbered recording.

The number supplied must match
a specific recording, as stored in
the ‘Recordings’ table in the
database. Nothing will play if it
doesn’t. See the reporting options
to determine what number is
assigned to which recording.

--unplayed A filter to force the random selection of music
written by a composer who has not previously
had anything at all played.

You acquire a new recording by
Anton Hickmauser: Hickmauser
is an unplayed composer. This
filter will force the selection of
that new acquisition, because
Hickmauser is an unplayed
composer.

--unplayedworks A filter to force the random selection of
recordings which have not previously been
played, even though their composer may well
have had other recordings played before.

You buy a new recording of
Beethoven’s 5th. Beethoven has
had loads of other music played.
This filter will force the hitherto-
unplayed recording to be
considered for the next
randomised selection.

--minduration=y A filter to force the random selection of
recordings which last for at least y number of
minutes.

The default is 0, meaning ‘any
recording at all matches’.

Giocoso User Manual v1.0 Page 62

--maxduration=y A filter to force the random selection of
recordings which last for no more than y
number of minutes.

The default is 525960 minutes,
which is roughly equal to one
calendar year and therefore
practically means ‘all recordings
match’.

--negate Reverses the sense of other filters. If present, it has the effect of
inverting the sense of another
filter that is present. Thus
--composer=britten --negate
means ‘play anything provided it
is NOT written by Benjamin
Britten’ and --comment=callas --
negate means ‘play anything at
all, so long as Maria Callas is not
listed in the COMMENTS tag as
one of the performers.

10.3.1 Dbname
The --dbname parameter defines which database from which to select music to play. If not present,
Giocoso will assume you want to use Direct Play Mode, and thus search for FLACs to play in the
current folder. When present, Giocoso will search the named database’s Recordings table to determine
what should be played next.

Thus, the simplest way to run Giocoso in this randomised mode is to issue the command:

giocoso --dbname=main

(Or whatever database name you actually created with the --createdb parameter, of course. ‘Main’
happens to be the name I use for my own database). The database name refers to a specific, physical file
found in the $HOME/.local/share/giocoso folder. If you say --dbname=main then Giocoso will be
looking for a database file called $HOME/.local/share/giocoso/main.db.

If Giocoso cannot find a file of the right name in that location, it will warn you of the fact and then
quit.

If it can find a database file of the right name, it will immediately open it, make a random selection of a
composer, and then a random selection of a recording by that composer.

This two-stage selection process is significant. By selecting from composers first, where every composer
is represented by a single row in a table, every composer is given an equal chance of initial selection.
That you have 4000 CDs by Bach and only 2 by Havergal Brian is irrelevant: both Bach and Brian are
represented equally within the composer selection process and both are thus equally likely to be picked
for play.

Giocoso User Manual v1.0 Page 63

Only once a composer has been selected does Giocoso then concern itself with making a random
selection of a recording written by that composer.

The net effect is that, over time, every composer’s work gets played roughly as frequently as any other’s.
The distribution of your plays, per-composer, should be approximately equal, given a long enough play
history.

Most of the other ‘selective’ parameters I’m about to discuss are intended to ‘nudge’ or ‘influence’
Giocoso away from this strictly-equal-chance way of selecting music: if you are desperate to listen to
some Wagner or a song sung by Callas, then a purely randomised selection of music won’t be what
you’re after! You’ll want to be able to say ‘play Wagner’, ‘play Owen Wingrave’ or ‘play something
performed by Callas’ and have Giocoso take account of your specific desires and requirements. See
Sections 10.3.5 and onwards for how you can influence this randomisation process by applying various
selection filters to Giocoso at run-time.

10.3.2 Selections
The --selections parameter controls how many pieces of music Giocoso will play before quitting. Valid
values are anything between 1 and 99, with a default value of 1 and any invalid values supplied being
silently converted to 1.

The parameter can be used in both Direct Play and Random Play Modes -but, obviously, in Direct Play
Mode there’s only one folder being played, so a selections value higher than 1 just means that same
piece of music gets played over and over again! In Random Play Mode, however, a different piece of
music will be selected each time we finish one selection and begin another.

Having a large value for --selections in conjunction with the --dbname parameter therefore allows you
to create a sort-of ‘wall of ever-changing music’, similar to what you might hear when tuning into your
local classical music FM radio station (but without the annoying talking the presenters like to indulge
in between pieces!)

Instead of inane patter from a presenter, each selection is separated from the next by a period of
silence, the length of which is governed by the --pause parameter (see below).

10.3.3 Pause
The --pause parameter takes a numeric value from zero to anything at all: there’s no upper limit, but
negative values are not allowed and, if present, are converted to the default value of 10. The value is the
number of seconds between successive plays of music when --selections is greater than 1.

A value of zero will mean that a series of (say) 4 selections will play one after the other, without
significant pause between them, though there may still be a bit of silence as it takes Giocoso a finite
amount of time to find another piece to play and start its playback. The default of 10 gives a reasonable
period of ‘reflective silence’ after one has finished and before the next kicks in.

10.3.4 Timebar
The time bar is a feature by which Giocoso will not play anything else by a composer who has already
had something played earlier in the day. Suppose, for example, that Giocoso randomly selects some

Giocoso User Manual v1.0 Page 64

Beethoven to play at 9AM one day: how long should Giocoso wait before selecting something else by
Beethoven (conceivably, even, the same piece) for playback?

The default answer to that question is ‘6 hours’ -which is to say that the default time-bar in Giocoso is six
hours long.

The --timebar parameter, however, can be used to change the default to anything from 0 hours to 999
hours (which is about 42 days). If --timebar=0, then a play of composer X at 9AM doesn’t stop
composer X being selected for another play at all. You might end up, by chance, with an entire morning
of plays of Elgar, for example ☺ If the timebar is set to less than 0 or more than 999, the default value
of 6 kicks in silently.

A setting of --timebar=999 will mean, however, that if Elgar is picked for playing at 9AM today, 1st
January, he won’t be a candidate for anything else to be played until (approximately) midnight on
Friday, 12 February.

The point of the time-bar is to stop Giocoso over-playing some composers at the expense of others
-and to stop you getting bored with whoever it randomly chooses for playback. Please note that
Giocoso records the time of a ‘play’ at the point that it finishes playing. So if you start playing a piece of
Elgar at 9am, but it doesn’t end until (say) 9.20am, then the timebar will only apply from 9:20am
onwards.

If you need a longer ‘ban’ on a particular composer (or set of composers) then, rather than set an extra-
long timebar parameter, you can instead configure an “exclude”. See Section 5.2 for details on how to
do this.

10.3.5 Genre
The --genre parameter allows you to influence the random selection process so that what Giocoso picks
to play matches your supplied parameter value (or partly matches it). If you fancy listening to some
opera, for example, then

giocoso --dbname=main --genre=opera

...will get the job done (obviously the database name needs to match your own choice of database
name: ‘main’ happens to be mine).

The parameter value is matched to whatever you’ve tagged your music files with in the GENRE tag and
the genres you chose to use when tagging your music obviously affects what sort of selection you can
make with the parameter now. If you’ve tagged everything up as ‘classical’, then you can’t really use the
--genre selection filter now to make one type of music get played in preference to any other type, for
example. And if all your operas were tagged as ‘Music Drama’, then a search now for ‘opera’ isn’t going
to match anything.

If, however, you’ve used the sorts of tags I recommend at https://absolutelybaching.com/music-
articles/a-list-of-classical-music-genres/, then you’ll be able to use this parameter to get Giocoso to
play some ballet, or some string quartets, or some film music. The specifics of what will be picked to be
played if you say --genre=ballet remain randomised ...but at least you can be sure you’ll be listening to
the Nutcracker or the Prince of the Pagodas and not Symphony No. 5 in C minor!

Giocoso User Manual v1.0 Page 65

https://absolutelybaching.com/music-articles/a-list-of-classical-music-genres/
https://absolutelybaching.com/music-articles/a-list-of-classical-music-genres/

As with all the other parameters we’re going to discuss next, Giocoso matches the tag values in a case-
insensitive manner. If you tagged your music as “Opera”, a selection for --genre=opera will match, even
though one uses a capital ’O’ and the other doesn’t. The text match is also ‘wild-carded on the outside’,
meaning that if you said --genre=pe ...that would match ‘opera’ just fine. If you said --genre=on,
though, that would match both concerto and symphony. That would still work: you’d have limited your
next music play to something that belongs to one or other of those two partly-matching genres. You
are not now, however, being completely specific about a genre, but allowing some ambiguity to kick in -
which can make for interesting listening, so go right ahead!

You cannot positively select multiple genres by supplying the --genre parameter more than once. If you
do, the last value supplied is the one that will apply. Hence:

giocoso --dbname=main --genre=symphony --genre=ballet

...will result in a random selection of a ballet only for the next play, not symphonies. Naturally, as in the
‘--genre=on’ example given earlier, if the supplied parameter is partially-spelled and thus ambiguous,
permitting of a match to more than one genre, then yes: you could find music from any of the partial-
match genres being selected for the next play.

10.3.6 Composer
In the same way the --genre parameter forces the selection of something to play from database records
which match on the GENRE tag, so the --composer parameter allows you to force selection of things to
play that have been tagged in the COMPOSER field with a particular matching value.

The parameter value is searched for regardless of case and is matched in a wild-carded manner. Thus a
search for --composer=brit will find a match with Benjamin Britten easily enough. On the other hand,
a search for --composer=ga will match both Havergal Brian and Edward Elgar -meaning that the next
play could be of music by either of those fine composers. The fewer characters you type, therefore, the
more possible matches there may be -and Giocoso will randomly select something to play from all
those matches.

If you want to get very specific, such that only one, unambiguous composer’s works are selected for the
next random play, you may need to spell out the names with spaces in them. A search for
--composer=mozart, for example, might get you Leopold or Wolfgang. So if you want to be very
particular that it’s only Leopold’s music you want to listen to next, you’d need to spell out first and last
names. As soon as you introduce spaces into the proceedings, however, you need to wrap the entire
parameter value in double quotation marks. Thus, you would have to type;

giocoso --dbname=main --composer="Leopold Mozart"

...to get precise about it.

This rule of ‘wrap arguments with spaces in quotation marks’ is general, by the way: it applies to all
parameters that take text values, not just the --composer one.

Giocoso User Manual v1.0 Page 66

10.3.7 Performer
The --performer parameter is used to restrict Giocoso to playing only music whose PERFORMER tag
matches (or partially matches) the parameter value. Bear in mind that the PERFORMER tag should, as
per my Axioms of Classical Tagging, really only contain one name -and that name will be the
‘distinguishing artist’ name that makes this recording of a composition unique and distinguishable
from that one. It won’t, therefore, usually include every person singing in an opera -but probably the
fact that Georg Solti is conducting it.

If you want a quick way of saying ‘Giocoso, play me something that Karajan conducted’, therefore, the
command:

giocoso --dbname=main --performer=karajan

...will likely do the job for you.

10.3.8 Comment
The --comment tag is used to make Giocoso find a random selection of music where the COMMENT
tag contains something that matches the parameter value (as usual, the match is case-insenitive and
wild-carded on the outside, meaning that a value of ‘cal’ will match Maria Callas and Calthorpe
Burgundy equally well).

In my Axioms of Classical Tagging, I reserve the COMMENT tag for a free-form text description of all
the artists performing on a recording. Don’t confuse this with the PERFORMER tag, which is reserved
for the single name of the ‘distinguishing artist’. An opera may well have a conductor, an orchestra, a
chorus and sixteen principle singers listed in COMMENT -but the PERFORMER tag would say (for
example) just George Solti.

Keep the distinction in mind. When you are hoping to hear something Marissa Robles played harp on,
chances are she’ll be listed in the COMMENT tag, not the PERFORMER one (she’s only the harpist,
after all, not the orchestra conductor!)

Many people seem to dislike the way I suggest to use the COMMENT and PERFORMER tags this
way, which is fair enough. So long as you know what data is stored in what tag, though, both
parameters are available now to swing Giocoso to finding candidate plays that match whatever
combination of parameter and values you now supply.

10.3.9 Composition
The --composition parameter allows you to say ‘Play Peter Grimes’ (as an example!):

giocoso --dbname=main --composition=grimes

The composition parameter value is compared in a wild-carded and case-insensitive way with the
contents of the ALBUM tag, so you again might get more matches than you originally envisaged. If
you’ve tagged Britten’s Sea Interludes as (for example) ‘Sea Interludes from Peter Grimes’, then the
above command might well end up playing the orchestral Sea Interludes, not the opera you perhaps
intended.

Giocoso User Manual v1.0 Page 67

I want to pause at this point to mention that the five selection parameters I’ve just listed (genre,
performer, composition, comment and composer) are all exclusive. If you try to use more than one at
once, they won’t work properly. Imagine asking for ‘composer=beethoven and composition="Rite of
Spring", for example: the combination is illogical and cannot result in anything successfully matching
both criteria. Allowing both parameters to be used simultaneously is therefore not permitted.

To avoid this sort of logical absurdity arising from multi-parameter use, Giocoso applies an ‘order of
precedence’ to these particular parameters, as follows:

composition > composer > genre > performer > comment

That is, if you say “Composer=Britten and Comment=Callas”, only the composer selection filter will
apply: the comment filter will be silently ignored. Likewise, if you said “Composition=Lulu and
Composer=Mozart”, the composition takes precedence and you’ll end up listening to the opera by
Alban Berg. The requirement of the composer parameter is silently over-ridden by the higher-
precedence composition one.

There is one exception to this general rule of ‘one filter at a time’, though: you are allowed to do a
composer+genre combination filter, for those times when you specifically want to listen to a
Beethoven symphony or a Haydn mass. So, genre+composer is respected in full, but any other
combination of these selective filters will be regarded as merely a single filter, depending on the order
of precedence. The genre+composer combo can also be negated (see below, Section 10.3.15), but only
in its entirety. That is, if you say --composer=haydn --genre=choral --negate then you will making
Giocoso look for not-choral compositions that are not-by Haydn. You cannot get it to apply the
negation to just one of the filters, basically (so, ‘I don’t want Haydn, but I do want choral’ is not
achievable in this way).

10.3.10 Recordnumber
The --recordnumber parameter is an unusual one that takes a specific numeric value (unlike all the
other selection parameters I’ve described before now, which all take textual entries).

The problem is that if I say ‘--composition=”Peter Grimes”, I know I’m going to make Giocoso play a
version of the Peter Grimes opera ...but I have several versions of that opera in my music collection,
and a selection by composition name therefore doesn’t tell me which one I’m going to get to listen to
next.

If you happen to know that Britten’s own recording of it is number 1862 in your collection and the
Goodall mono version is number 1863, though, you can now say…

giocoso --dbname=main --recordnumber=1862

...and be guaranteed that it will be the Britten/Pears recording that gets played, not the Goodall.

This is an odd parameter, in fact, because it’s the only one that completely and unambiguously removes
all randomness from the music selection process: because each recording in your collection has a
unique ID number assigned at the time the collection is scanned, you know without doubt precisely
what recording is about to be played. It means you are in Random Play Mode (because you’re using a
database) but not actually randomising anything!

Giocoso User Manual v1.0 Page 68

In fact, using --recordnumber is the exact equivalent of cd-ing to a specific music folder and launching
Giocoso in Direct Play Mode there. It is as precisely deterministic. The difference, however, is that
because you are in Random Play Mode, there’s a database to record the play details into. A Direct Play
Mode play of something would be forgotten the moment it’s finished, because no record of it is kept
anywhere -so it won’t, for example, be able to be taken account of in relation to a time-bar calculation.
But since we’re still in Random Play Mode, but specifying a particular recording, the play event will be
recorded in the database -and the fact you just played some Benjamin Britten at 9AM can now be taken
account of when computing an applicable time-bar.

To use the --recordnumber parameter, you obviously need to know the precise IDs that each recording
in your collection has been assigned in the Giocoso database. For that, you’ll need to use the
--albumlist report functionality, which is described in section 10.4.x

10.3.11 Unplayed
The --unplayed parameter searches for any composers that have not previously been played. It takes no
arguments: the mere presence of the parameter on the command line launching Giocoso causes the
player to find composers who do not have any records in the PLAYS table in the database.

Note the subtle difference between this parameter and the --unplayedworks one, which is described
next.

10.3.12 Unplayedworks
The --unplayedworks parameter triggers Giocoso to search for any compositions which have not
previously been played -where a “composition” is defined by the ALBUM tag and should (according to
the Axioms of Classical Tagging) be the ordinary composition name plus the distinguishing artist’s name
plus the year of recording.

Note the subtle difference between --unplayed and --unplayedworks. Suppose you buy two new CDs.
One an obscure oratorio by the hitherto unknown composer Walter von Braunenhoffenstop and the
other a hot new recording of Beethoven’s 5th Symphony, conducted by Theodore Currentnews.

Walter von Braunenhoffenstop is a brand new composer to you. You’ve not got anything else by him in
your collection and you’re desperate to hear the new acquisition. Running Giocoso with --unplayed is
likely to trigger the playback of Walter’s new oratorio, because Walter is a brand new and therefore
unplayed composer.

But --unplayed will not help you hear your new recording of Beethoven. Beethoven’s a composer you’ve
probably got lots of other recordings of, and you’ve probably heard a bazillion versions of his various
symphonies over the years. Beethoven is thus not an ‘unplayed’ composer… but that new recording of
his Symphony No. 5 is an unplayed composition. Therefore, if your desire was to hear the new Beethoven
recording, you’d want to run Giocoso with the --unplayedworks parameter.

The difference is subtle, but quite distinct.

Of course, Giocoso is always randomising -so, even if you said ‘play me unplayedworks’ there’s no
guarantee that Giocoso would choose that particular new recording, if you’ve got dozens of other

Giocoso User Manual v1.0 Page 69

recordings to which you’ve never quite gotten around to listening -but at least the new Beethoven
recording would be ‘in with a chance’!

If you wanted to force the playing of that specific new recording, though: well, that’s what the
--recordnumber parameter is for. When random chance doesn’t cut it, you can always force the
playback of a specific recording with that.

10.3.13 Minduration
The --minduration parameter can be used in conjunction with any other parameter. It takes a numeric
argument which represents minutes. The default value for this parameter -and the value that kicks in if
you supply an invalid value for it, such as ‘-10’, is 0. All recordings in your colleciton last at least 0
minutes, of course, so the default meaning of this parameter is to not exclude anything from playback.

The presence of this parameter with a valid, non-zero value makes Giocoso select randomly only those
candidate recordings which are known to last for at least that number of minutes.

You can apply this parameter on its own or in conjunction with other parameters. Thus:

giocoso --dbname=main --minduration=30

…means ‘play me something, anything, provided it lasts longer than 30 minutes’. Whereas:

giocoso --dbname=main --genre=ballet --minduration=30

...means ‘play me a ballet that lasts longer than 30 minutes’. And so on.

10.3.14 Maxduration
The --maxduration parameter works exactly like the --minduration one, except that it sets a maximum
length of time a piece of music can last for it to be a candidate for playing, with the parameter value
again being a whole number of minutes.

Maxduration can be used on its own, in combination with other parameters -and even in combination
with --minduration. This, for example, would be fine:

giocoso --dbname=main --genre=ballet --minduration=30 --maxduration=90

...and means ‘play me a ballet that lasts between 30 and 90 minutes’.

The default value for --maxduration (and the value that kicks in if an invalid value is supplied) is
525960 minutes, which is about the number of minutes in a year -and thus effectively means ‘no
selection is being applied’.

If both min and maxduration are used at the same time, the minimum must be lower than the
maximum… or the two parameters are simply ignored!

10.3.15 Negate
The --negate parameter is a bit of a strange one, in that it has no independent meaning, but merely
reverses the sense of certain other parameters, if they happen to be present.

Giocoso User Manual v1.0 Page 70

For example, --comment=callas means ‘find me something to play in which Maria Callas sings’. The
parameters --comment=callas --negate simply mean, therefore, ‘find me something to play in which
Maria Callas doesn’t sing! Similarly, --composer=britten --negate means ‘play me something by anyone
other than Benjamin Britten’. And --performer=karajan --negate means ‘play me anything that isn’t
being conducted by Karajan’.

The negate parameter works to reverse the meaning of the following other selective parameters:

• genre

• composer

• performer

• composition

• comment

It has no effect in relation to negating the meaning of any other parameters that might be present. You
cannot, therefore, say --minduration=10 --negate as though you were trying to say ‘Play me things that
do NOT have a minimum duration of 10 minutes’. That combination won’t work (and, surely, is
logically equivalent to --maxduration=10 in any case?!)

Giocoso User Manual v1.0 Page 71

10.4 Reporting Parameters
These parameters allow Giocoso to produce reports about what it has played, what the recording
collection looks like and so on: they thus have no meaning if Giocoso is only ever run in direct play
mode, without a database.

--report=xxxx An instruction to produce a report of the
plays previously recorded within a
database. Valid values for xxx are either a
full path and filename for a written report,
or the word ‘screen’ to display the report
on-screen.

Requires the –dbname
parameter, so we know what
database to report on.

--reportsort=y Orders the report by one of the columns it
contains, where y is the column you want
to be the sort column.

If absent, plays are reported in
ascending chronological order
(i.e., from earliest to latest)

--reportdays=y Restricts the content of the report to plays
made in the last y days

If absent, all plays are reported.

--reporttype=xxxx Full or Diff(erential). Full is the default. Export all plays, or only those
plays made since the last export.

--recordinglist An instruction to generate an on-screen list
of all recordings, together with their
unique ID numbers. Report is sorted by
composer and within composer by
composition name.

You need to know a recording’s
unique ID if you ever want to use
the --record-number selection
filter. Requires --dbname
parameter so we know what
database to query

--composername=xxxx Used in conjunction with --recordinglist to
restrict the on-screen list to the recordings
attributed to a particular composer

The supplied parameter is
wildcarded on the outside, so a
value of ‘=brit’ is sufficient to
filter the recordings list to show
only those composed by
Benjamin Britten. Case-
insensitive.

--stats An instruction to produce a quick one-
page statistical summary of the contents of
the recording database, including numbers
of composers, unplayed recordings, a
distribution of recordings by their play
length and so on.

Giocoso User Manual v1.0 Page 72

10.4.1. Report
The --report parameter triggers most of Giocoso’s reporting capabilities and must be present for most
of the other reporting parameters to make sense or function. It takes two possible arguments: a full
path and filename if you want the report that’s about to be generated written to a text file; or the word
“screen” if you want the report displayed within the terminal session.

Note that the --dbname parameter must be present whenever --report is mentioned, because without
it, we cannot know what database you want to query to generate the report in the first place. That
database needs to be the same one you scanned when creating or refreshing the database, and the one
you use when running Giocoso to play music.

The --report parameter always generates a listing of the plays that are recorded within the database. By
default, it will report every single play that has been made, since the first time Giocoso was ever used to
completely play anything.

The basic report can most simply be generated like this:

giocoso --report=screen --dbname=main

...and that will look like this:

You’ll notice that it consists of six columns of meaningful data, plus an initial ‘ID’ column which is
simply a unique identifier for each row that increments from 1 upwards, without limit. You can also
regard the date and time columns as being part of a single ‘date and time of play completion’ column.

So that means there are really only five columns of ‘meaningful’ data -and, by default, the report is
produced sorting by the date/time combo one: you can see my plays are listed starting on January 9th
2021, incrementing steadily by day thereafter.

That sort-ordering is not much use, however, if you want to ask ‘how many times have I played Anton
Bruckner?’ That is why you may want to generate a report with some additional parameters, such as
--reportsort and --reportdays, which I shall discuss next.

If a report is displayed on screen, it can be scrolled through one line at a time in either direction using
the Up- and Down-arrow keys; you can also page through the report in either direction, a screen at a
time, using the PgUp and PgDn keys.

Giocoso User Manual v1.0 Page 73

To stop displaying the report on screen, just tap the letter ‘q’ (for ‘quit’).

If you direct the report to a path/filename combo, rather than to ‘screen’, you’ll be able to open it in any
text editor. This command:

giocoso --report=$HOME/Desktop/rpr.txt --dbname=main --reportsort=2

...produces something that is very similar to that seen in the previous screenshot, but won’t look
anything like it! Here is a sample:

The thing which makes this version of the report look weird is that every piece of data is separated
from every other piece by a ‘pipe character’ (i.e., |). That makes this, therefore, a ‘pipe-delimited text
file’, which is very similar to a ‘comma-separated variable file’ (CSV), except that it’s a pipe character
doing the delimiting, not a comma.

The use of a different delimiter to what you may be used to makes little difference to your ability to
import these sorts of files into tools such as Excel or LibreOffice Calc. Here, for example, I’m trying to
open the file in LibreOffice’s spreadsheet program (Calc):

Giocoso User Manual v1.0 Page 74

I simply tell it that the file is ‘Separated by… Other’ and type a pipe character into the field next to the
word ‘other’. Immediately, the file preview shows it interpreting the data correctly into distinct
columns of data. The final import is then easy:

Once you can get Giocoso data into a spreadsheet in this way, it’s trivial to be able to generate graphs
and pie-charts from it, helping you to analyse and understand your music listening habits.

10.4.3 Reportsort
As you’ve just seen, the on-screen report can be thought of as consisting of 5 meaningful columns of
data. Label the date/time one ‘1’ and go rightwards, incrementing as each new column appears: that
means the COMPOSER column is ‘2’, the COMPOSITION=’3’, the GENRE is column ‘4’ and, finally,
the DURATION column is ‘5’.

The --reportsort parameter takes a numeric value, from 1 to 5, indicating which of those columns you
want to sort the report by. The default, as you’ve just seen, is to sort by the date/time combo column, so
--reportsort=1 would appear identical to the previous screenshot.

This command, however:

giocoso --report=screen --dbname=main --reportsort=2

….produces a report that looks like this:

Giocoso User Manual v1.0 Page 75

….and here you’ll see all the Aaron Copland is listed together, followed by all the Adolph Weiss and so
on. Here, then, you’re now reporting all the plays you’ve ever made using Giocoso by the composer
column.

If you were therefore ever wondering, ‘When was the last time I ever play Das Lied von der Erde?’, you’d
probably best run --report --reportsort=3, thereby ensuring all the recordings/compositions were
sorted together by their name. Scroll quickly down to the ‘D’ entries, and pretty soon, you’d see all your
Das Leid plays listed together:

...so now I know I last played it on 10th February 2021, finishing at around 11pm!

Having once generated a report in one sort order, you cannot then change the ordering, short of
pressing ‘q’ to quit and then relaunching the report with a different --reportsort number.

10.4.2 Reportdays
By default, all reports generated by the --report parameter, however they may be sorted, will include
every play made in Giocoso since you started using Giocoso. As time passes, that makes for ever-longer
reports, of course. The --reportdays parameter therefore accepts a numeric value that limits the report
to listing only those plays which have happened in the last y days.

The default number of dsays is 36,500 -which, of course, is the number of days in a century and thus is
functionally equivalent to ‘no reportdays filter applied at al!’ If you supply a non-valid number of days
for this parameter (for example, a negative number of days, or a non-integer value such as ‘10.5’), that
default value is silently applied in the invalid value’s place.

10.4.4 Reporttype
I’ve already mentioned that a report, whether directed to screen or text, will contain -by default- the
complete history of plays made with Giocoso or, if that gets too big, can be filtered by a number of
days. Filtering by day can be a bit awkward though, as it’s not terribly precise. For example, you played
some music 7 days ago at 9.25AM. You run a --reportdays=7 report at 9.22AM and that play will be
included on the report, because it took place within the previous 7 days. Run the exact same report 4
minutes later, however, and that play will disappear off the report… because now --reportdays=7 takes
you back to plays made since 9:26AM 7 days ago… and that play is now one minute past its sell-by date.

Giocoso User Manual v1.0 Page 76

Thus, Giocoso allows you to specify a different way of saying what should be on the report or not:
--reporttype can be supplied with a value of either “full” or “diff ” -and a differential report is
guaranteed to contain only those records which were not included on the previous differential report.

You’ve already seen that every play in Giocoso’s database is assigned a meaningless and invariant ‘ID
number’ to uniquely identify it. Giocoso happens also to record in its database the highest ID number
it has previously exported in a differential export. So, if you run a ‘diff ’ report on Monday, it might
include plays up to 3017; if you run a second ‘diff ’ report on Tuesday, it will only include plays from
3018 onwards. (The highest number reached in each report export is stored in the MUSICPLAYS table,
in a column called MAXPLAYEXPORT).

Note that a ‘full’ report (which is the default report type) doesn’t alter the maxplayexport number
stored in the database, so you can do a series of differential exports, followed by a full… and the next
differential will pick up the plays done since the last differential export: the full export done in
between won’t have altered the ‘play number reached’ at all.

It has to be said that the use of differential reporting is pretty specialised and it’s not something a lot of
people will want to do very often, if ever. As an example of what’s possible with it, however, take a look
at my own website (at https://absolutelybaching.com/music-plays/): the list of my plays shown there is
derived directly as a report from Giocoso on my main PC. Rather than export every play since the
dawn of 2021, however, and wiping the existing data and replacing it every time, I instead produce a
differential export every 15 minutes out of Giocoso and ship what amounts to a list of ‘the latest plays’
to the website, where it’s added to the records that already exist.

This sort of reporting on your music listening habits is not going to appeal to everyone, of course: but
Giocoso supports it, even so.

10.4.5 Recordinglist
The --report, --reportsort, --reportdays and --reporttype parameters are all associated with producing
lists of what plays have been made by Giocoso. How about reporting on what recordings are available to
Giocoso? That’s where the --recordinglist parameter comes in. Run that (with a --dbname parameter)
and suddenly Giocoso will tell you about all the compositions it knows of. The parameter takes no
argument: it’s either present or not. If it is, you’ll see this sort of output on screen:

Giocoso User Manual v1.0 Page 77

https://absolutelybaching.com/music-plays/

It’s a very simple report, listing compositions (or ‘recordings’ if you like) in composer/composition
name order. So everything by Aarton Copland comes before everything by Benjamin Britten, and
within Benjamin Britten, Peter Grimes comes before Young Apollo.

This explains the apparent odd and jumbled appearance of the ID column: it’s not sequential, because
the report is not listing things in ID order.

The point of this report is simply to allow you to associate rapidly the unique ID with a particular
recording -and you might need to do that if you ever want to tell Giocoso to play, specifically,
Copland’s own 1969 recording of his Outdoor Overture. If you want to do that, you’ll need to know
that that specific recording has, uniquely in Giocoso’s database, the ID number 18. Knowing that, you
can then issue the command:

giocoso --recordnumber=18

...and that particular recording will then be played, to the exclusion of all others.

As previously described in Section 10.3.10, in other words, whenever you want to stop using Giocoso’s
random play capabilities and instead insist on a deterministic play of a specific recording of a
composition, you’ll use --recordnumber to achieve that… and --recordlinglist gives you the information
you need to feed that parameter with the required unique ID number.

10.4.6 Composername
The --composername parameter is used only in association with the --recordinglist parameter. You’ve
already seen why you might want to produce a recordinglist report… and that it starts listing things by
composers in A, B, C order when you do so.

If you were wanting to know the unique ID associated with Zbigniew Preisner’s Requiem for my friend,
though, it might be a bit annoying to have to page through every single recording you own, sorted by
the Aaron Coplands, the Benjamin Brittens, the Camille Saint-Saëns and so on, first.

A large music collection can take a long time to page through, when sorted by composer name,
basically. For that reason, the --composername=xxsx parameter is provided so that you can filter the
--recordinglist report by a particular composer’s name or part-name.

To hunt down that piece by Zbigniew Preisner, for example, this command will help:

giocoso --recordinglist --composername=preis --dbname=main

...and now only recordings by someone called ‘...preis…’-something-or-other are listed and I can
immediately see that I should be asking Giocoso to play --recordnumber=12720 to hear the Requiem I

Giocoso User Manual v1.0 Page 78

wanted. As with all these textural-style parameters, therefore, note that the --composername
parameter value is wild-carded on the outside and is handled case-insensitively.

10.4.7 Stats
The last reporting parameter to mention is the --stats one. It takes no value, but its presence will make
Giocoso display a quick one-page summary report of the state of your music collection. The parameter
needs the --dbname parameter to tell it what database to query for the statistics figures. So this
command will do the job, for example:

giocoso --dbname=main --stats

These statistics tell me, in the upper half, how many unique recordings I have, and by how many unique
composers. I can see the ‘continual play length’ of my music collection: I have enough music here to
play continuously for 231½ days, for example. I can see at a glance how many of my recordings I’ve
actually played (only 3,037 of the 12,788 available to me), with over 10,300 recordings never having
been played. (Don’t try to derive one of these figures from the others, by the way: they don’t work like
that! If I play the same recording 500 times, it reduces the recordings not-yet-played figure by 1,
because it’s a single recording, but increases the number of plays by 500, because each play ‘counts’!)

In the bottom half of the report, you get a sort-of histogram distribution report: these numbers should
add up to the ‘Recordings (total)’ figure displayed in the top-half of the report. You can see I have an
alarmingly high number of sub-5 minute recordings, which might indicate that I should re-think the
way I have catalogued lots of little snippets of music as ‘recordings’ in their own right. But you can also
see that the vast bulk of my music collection lasts between 10 and 60 minutes, which seems quite
reasonable. The ‘more than 2 hours’ recordings are probably mostly Wagner ones!

For each ‘duration band’, you also get played v. unplayed figures -and these do add up, so 588+803 in
the first row should (and does!) equal the 1391 total of sub-5 minute recordings I’ve got in my
collection.

Giocoso User Manual v1.0 Page 79

Finally, note that you cannot combine the three sorts of report that Giocoso can produce. Ask for
--recordinglist and --stats, for example, and you’ll only get the Album List. Ask for a --report and an
--recordinglist and you’ll only get a Plays Report. And so on: think of these as three distinct types of
report and choose to produce only one of them at a time and you’ll be fine. Their order of precedence
is: Report > Recordinglist > Stats.

10.5 Run-time Parameter Summary
I suppose it goes without saying -but I’ll say it anyway: this sort of reporting (and, indeed, this sort of
filtering of play selections) can only take place meaningfully in the presence of an extremely well-
organised music collection, where tags have been applied consistently and the physical location of your
music closely and faithfully reflects the logical ordering of your metadata choices.

In a world where Beethoven could be catalogued as “Beethoven”, “Beethoven, L”, “Beethoven, L. v.”,
“Ludwig van Beethoven” or “Ludwig Beethoven”, you are going to struggle to output meaningful
reports of how much Beethoven you own, let alone persuade Giocoso to play it to the exclusion of all
other music. If your data describes a single entity in 15 different ways, nothing can help you make
coherent sense of that, really!

Hopefully, you’ll see from this tour of the various run-time parameters that Giocoso can use that
Giocoso is capable of very subtle manipulation: ‘play me things by Britten that were ballets that don’t
take more than 40 minutes to play’, for example. I don’t know any other music players that can do that
sort of thing… but Giocoso can only do it if your metadata tags correctly and consistently describe
Britten and Ballet!

Giocoso is flexible, for sure; but fundamentally, it’s only as good as your metadata!

Giocoso User Manual v1.0 Page 80

11.0 Some Technical Extras
11.1 Use of ALSA
Giocoso is intended to output its audio signal to an audio device. The process of deducing which audio
device hardware address to direct output to was already described above, in Section 10.2.4.

Usually, Giocoso will use ALSA to output sound. Ideally, Giocoso’s sound output will not go via
Pulseaudio at all. This is a deliberate design decision: natively, ALSA can only output one sound event
at a time. If your music player has ‘hogged’ the ALSA audio device, then no other audio can be heard
whilst music plays (which is obviously desirable in a classical music player). Conversely, it is possible to
visit (say) Youtube and begin playback of something with an audio track -and, at this point, the audio
device cannot be accessed by Giocoso. Even if you pause video playback in your web browser, it has
‘dibbs’ on the audio device and no other audio can make it through. Music may appear to play in
Giocoso, but only silence results.

As mentioned, this behaviour is by design -but it may not to be everyone’s taste. If your distro uses
Pulseaudio (which can do device sharing out of the box), you may never even notice this behaviour.

The topic of audio on Linux is extremely complicated, however, and well out of scope for this
document. I merely point out that you may want to make sure that Giocoso is the only program
outputting -or even trying to output- audio at all times. If extended silence results when Giocoso claims
it is playing something, the problem is either in the choice of output device (as explained in Section
10.2.4) or that the output device is an ALSA one that has already had audio directed at it which has not
yet been told to ‘let go’ of the device.

11.2 Lost Scrobbles
Giocoso makes every effort to transmit the details of the most recent play to Last.fm if scrobbling has
been (a) configured [see Section 8.1] and (b) enabled [see Section8.2].

However, Last.fm is an external website and may well be beset at various times of the day with
administrative outages, denial of service attacks and any number of other problems that prevents
anyone connecting to it.

If this network ‘outage’ occurs at the point where Giocoso want to scrobble, there will be lengthier-
than-normal pause between plays in a cycle of selections, and the ‘Now scrobbling’ message may be
appended with a red ‘Error!’ message.

At this point, Giocoso simply gives up trying to scrobble the last-played tracks and moves on to playing
the next (if the number of --selections is not yet satisfied, anyway).

The failed scrobble is ‘lost’ and cannot be re-captured or re-submitted. The incidence of failed and lost
scrobbles has been fairly low for me personally (at approximately one or two a week), but it is definitely
not a zero probability that your scrobbles may fail.

Giocoso User Manual v1.0 Page 81

Even when scrobbles to Last.fm fail, the local database will always accurately record the ‘failed’ play, so
the local database is always available as a ‘source of truth’.

If it is nevertheless important to you that Last.fm records absolutely everything listen to, you may want
to take advantage of a service such as The Universal Scrobbler (which I have no association with and
therefore take no responsibility for!) to submit the occasional scrobble that fails to Last.fm by hand.

When you visit that website, you’ll need to log on with your Last.fm credentials and give the Universal
Scrobbler permission to post to your Last.fm account (much in the way described for giving Giocoso
the same permissions in Section 8.2). Note that The Universal Scrobbler site has no login of its own: it
merely asks you to give it permission to use your Last.fm credentials (a permission which you can
revoke at any time and never requires you to divulge your actual Last.fm username or password in any
case).

In my case, for example, the play of Cherubini’s Marche religieuse failed one evening (and the Last.fm
website was not contactable in a browser, either).

I was able to see the details of the ‘lost scrobble’ by running a report with this command:

giocoso --report=screen --dbname=main --reportdays=1

...and therefore could fill in the Universal Scrobbler submission form (accessed from the left-hand
menu under the ‘Scrobble manually’ menu item) like so:

Technically, five pieces of information are requested, but only two are actually required -though I’ve
chosen to submit the duration of the Marche religieuse anyway (measured in seconds, so a bit of
mental arithmetic is required to convert Giocoso’s claim of ‘5 minutes 16 seconds’ into 316 seconds!)

Click the ‘Scrobble’ button when ready.

Giocoso User Manual v1.0 Page 82

http://universalscrobbler.com/

Not a lot will happen when you do, but a message should appear in a black ‘lozenge’ in the top right-
hand corner saying ‘Success - The track has been scrobbled’. Don’t click ‘Scrobble’ too often thinking
nothing has happened: you’ll end up submitting the same piece of music multiple times if you do!

Back in your Last.fm profile page, you should see the results of the new manual scrobble immediately
(though you’ll need to refresh the page first, of course!):

The new track has been scrobbled successfully, though it doesn’t appear in the order in which Giocoso
knows about. Here, Last.fm thinks it came after something by Buxtehude -which wasn’t listed in my
original report from Giocoso at all. The absence of Buxtehude from the earlier Giocoso report is,
however, merely a matter of timing. Here’s the same report produced a little later on:

So now you can at least see why Last.fm is reporting things by Arnold and Buxtehude… but clearly, my
Cherubini play came before those as far as Giocoso is concerned, where Last.fm now thinks it came
after.

Also note that Giocoso lists Arnold’s Little Suite as a single item -whereas it was scrobbled to Last.fm as
multiple ‘tracks’. Remember that Giocoso plays (and records) whole compositions, though in deference
to Last.fm’s primarily ‘track-based’ approach, it will always submit the four movements of a symphony
to Last.fm as separate ‘tracks’, whilst recording only the play of the entire symphony as a single row in
its own PLAYS table. Whether you choose to similarly manually submit ‘lost’ scrobbles to Last.fm on a
per-track or a per-composition basis is entirely down to you and how much manual typing you want to
do!

The point to make by way of summary is that Giocoso can most certainly ‘lose’ scrobbles because of
network connectivity or website availability issues beyond its control -but you always have the option
to manual submit anything that was ‘lost’ afterwards, if you feel the need to do so. (Generally, I don’t
bother!)

Giocoso User Manual v1.0 Page 83

11.3 Fonts
Being a text- and console-based music player, Giocoso depends heavily on your choice of terminal font
for the effectiveness of its appearance. You may be entirely happy with your existing terminal font, and
that’s fine f so. However, a couple of suggestions for highly-readable monospaced fonts seems
reasonable at this point!

My own choice of font, which you’ve seen in most of the screenshots in this document, is Century
Schoolbook Mono BT, which is available for free download at best-font.com. The only downside to
Century Schoolbook Mono BT, it seems to me, is that it can be difficult to distinguish capital Ohs from
zeroes: the zero is not slashed or dotted, for example.

Anonymous Pro Minus fixes that particular issue and is freely downloadable from marksimonson.com.
The big drawback of Anonymous for me is that it is a sans serif font (in other words, there are no little
lines and strokes to ‘finish off ’ the look of certain letters). That’s not a problem for some, but I
definitely prefer serifs!

So, for another excellent mono-spaced font that this time does do the serifs (and also makes Ohs and
zeroes easily distinguishable), you could do a lot worse than Go Mono, available for nothing at
fontlibrary.org.

11.4 Aliases
There is no doubt that there are a lot of run-time switches that can be used to alter or influence the
work that Giocoso does -and having to remember to spell them out every time you want to play a bit of
music can get very tedious very quickly!

For example, here’s the command I’ve been using to run Giocoso since the beginning of July 2021:

giocoso --dbname=main --selections=99 --device=plughw:2,0 --pause=5

--unplayedworks --maxduration=5 --scrobble --timebar=0

In plain English, that lot stands for ‘run in Random Play Mode, play 99 pieces of music at a time and
then quit; play to hardware device 2 (my external DAC), wait 5 seconds between plays of the separate
choices of music; only select things to play which have not been played before, and make sure they are
all less than five minutes long; once you’ve finished playing each piece, submit the ‘play’ to Last.fm;
and the fact that you’ve just played some Mozart or some Vivaldi shouldn’t be a bar to you playing
some Mozart or Vivaldi immediately afterwards,

Phew!

Thank heavens for the up-arrow on the Linux command line, allowing you to recall previously-typed
commands, because I’d be unlikely to be able to type that reliably more than once, I think!

But there’s an alternative, too: Linux’s ability to use ‘aliases’ to represent long combinations of
commands with a short one. The specifics will probably depend on what distro you’re running, but on
Manjaro, I have a $HOME/.bashrc file in which aliases are defined. Here’s some I prepared earlier!

Giocoso User Manual v1.0 Page 84

https://fontlibrary.org/en/font/go-mono
https://www.marksimonson.com/fonts/view/anonymous-pro
https://best-font.com/fonts/download-century-schoolbook-bt-font.html

You should be able to see that I’ve created three new ‘giocoso commands’, and described as being some
combination of long giocoso options. Thus giocoso-update is the ‘short’ command I’d use to get
Giocoso to check for software updates, without having to remember that doing so actually requires the
use of the --checkver parameter.

Similarly, I’ve said that the new command giocoso-play is equivalent to “giocoso --dbname=main
--selections=99 --device=plughw… and so on and on”. With that equivalence set in my .bashrc file, I
can now just type ‘giocoso-play’ and all those myriad switches will be submitted automatically and
without me having to remember any of them.

Commands which are aliased can still have extra parameters added. If, for example, I typed the
command giocoso-play --selections=3, the first part of the command would mean ‘run Giocoso with all
those runtime parameters including the one for playing 99 selections, and then set selections equal to
3’. The extra parameter I supply gets bolted on to the end of all those I’ve said the basic ‘giocoso-play’
command should imply.

That’s quite an interesting example, too, because --selections=99 is actually part of the alias, so I’m
essentially saying (abbreviating heavily!): giocoso --selections=99 --selections=3. When confronted
with the same parameter twice in the same invocation, Giocoso always takes the last value as the
‘truth’… so, my giocoso-play --selections=3 command will actually trigger the playing of just three
pieces of music before quitting, not the 99 implied by the alias.

Let’s take another example. Say I issue this command:

giocoso-play --selections=3

...and this happens:

Giocoso User Manual v1.0 Page 85

Well, that looks to be an error and therefore something’s not right! Well: read the error text carefully.
Giocoso says it can’t find any music to play that meets my selection criteria -and, as it happens, this
extract from a Giocoso Stats report will tell you it’s entirely correct:

That’s showing you that of all my music that has a duration less than 5 minutes, none of it is unplayed.
I’ve played every single piece of it at least once. Now check what my giocoso-play alias means again:

...--unplayedworks --maxduration=5…

So my alias implies ‘only play things that are hitherto unplayed AND which last less than 5 minutes’…
but the Stats report shows you there is no sub-five-minute music I haven’t yet played!

But now let me issue this command:

giocoso-play --selections=3 --maxduration=10

So, I’m still saying “giocoso-play”, which implies “unplayed, no longer than five minutes” but I’ve
added another parameter which says “no longer than ten minutes” (and the earlier stats report shows
you I’ve got plenty of under-ten-minutes music I haven’t yet played).

Here’s how Giocoso responds to that mixture of requests:

Well: it’s working!

Giocoso User Manual v1.0 Page 86

More particularly, the blue text in the middle of the screen tells you what selection criteria are actually
in use: and it’s the ‘less than 10 minutes long’ one. Because the --maxduration=10 came after the --
maxduration=5 implied by the alias, it takes effect… and music can be found to play just fine in
response.

You’ll also notice that ‘Selections’ in the header area is displaying ‘01 of 03’… so that again tells you that
the --selections=3 manually bolted on to the alias has taken precedence over the --selections=99 that’s
implied by the alias configuration.

In short: put your most common run-time options in an alias and you can still usually over-ride them
manually when you need to, by adding on to the alias, rather than not using it entirely. To be honest, the
alias I’ve shown you here isn’t the best: sticking maxdurations and the unplayed filters in it are a bit
foolish: those are things you might say occasionally as the mood takes you, not ‘standard operating
procedure’ options! But I hope you get the general idea of what’s capable with an alias, anyway.

Just remember; changes to your .bashrc file usually don’t take effect until you either (a) log off and log
back on again; or (b) open a new terminal session; or (c) type the command “. ./.bashrc“ in any
existing terminal session in your $HOME folder.

To conclude: Linux makes it easy to create new ‘commands’ which imply or mean a command plus a
whole bunch of run-time parameters. By typing in one short command, you’re then really submitting a
very long command. It’s a very convenient feature and I accordingly recommend you make use of it as
soon as possible in your use of Giocoso.

11.5 Transitioning from AMP to Giocoso
If Giocoso is your first venture in command-line, minimalist, optionally-scrobbling, optionally-
randomising music players… then you can ignore this section! However, if you’ve been happily using
AMP for the six months’ of its existence and are now confronted with the problem of how you make
the move from AMP to Giocoso, read on!!

Putting it as simply as I can: there’s no real transition issue at all to worry about. Firstly, you can install
Giocoso on a system that already has AMP installed and the two won’t conflict in the slightest. The
presence of Giocoso doesn’t affect AMP at all, nor vice versa. You can even continue playing music
with AMP whilst sometimes playing music with Giocoso.

In fact, there are really only two specific points about having both programs on the one PC to keep in
mind:

1. The two programs must use different databases; and

2. The play history from AMP can be imported into Giocoso

The first point is significant in that it means music played in one program won’t be recorded in the
other. If I play Wagner’s Das Rheingold in AMP one morning, Giocoso will not know that. Accordingly,
Giocoso won’t time-bar Wagner, not will a report from its PLAYS table mention that bit of play history
at all. The same is true the other way around: what is in Giocoso’s database is completely unknown to
AMP.

Giocoso User Manual v1.0 Page 87

The two databases can therefore co-exist as independent entities: they will be stored in different
physical locations ($HOME/.local/share/amp and $HOME/.local/share/giocoso, to be precise). That
means the two databases can even have the same name as each other. The database name specified at
the time of --createdb merely specifies the physical name the database file gets created with inside
those two distinct folders. So there’s no conflict and one database won’t over-write the other.

Because of this ‘product independence’, though, the fact that you’ve configured AMP to scrobble
doesn’t mean Giocoso inherits that configuration or authorisation: so you’ll need to configure
Giocoso’s scrobbling afresh, regardless.

The second of the two points I mentioned above has already been covered in Section 9.7 of this
manual: using the --importplays=/location/of/amp/database/database-name.db
command, you can extract the existing AMP play history and pump it into the empty Giocoso
database, thereby bring your play history across from one product to the other. It’s a one-way journey,
of course: AMP cannot import a Giocoso play history. It’s also something you should only really do
once, so the moment you’ve done it, you should stop using AMP to play music: any new plays done
with it won’t then be importable into Giocoso, short of creating a brand new Giocoso database and
doing a fresh import there (which then means plays recorded in the first Giocoso database are lost).

For this reason, I’d recommend having both programs installed together. Continue to use both as the
mood takes you until you are happy with the way Giocoso works (which shouldn’t take too long, I
think!). When you’re finally ready, do a once-off export/import of PLAYS from AMP to Giocoso… and
then never using AMP again. Uninstalling AMP at this point is simply a matter of issuing the
command: sudo rm -rf /usr/bin/amp.*.

11.6 Tested Distros
In general, I tend to test my software out on whatever distros happen to be in the top 10 Page Hit
Ranking table at Distrowatch at the time. Of course, distros move up and down the rankings over time,
so what’s in the top 10 today may not reflect what was in the top 10 when I was developing Giocoso!
For the avoidance of doubt, therefore, here are the distros on which I’ve run and tested Giocoso and its
desktop integration capabilities.

On the whole, Giocoso is likely to run fine on practically any distro -provided the software
prerequisites are met, particularly since a lot of distros are built from other distros I’ve definitely
tested. For example, I haven’t tested on Zorin but I expect Giocoso to run on it just fine because Zorin
itself is based on Ubuntu ...and I have tested on Ubuntu.

Meeting the software prerequisites can be a little tricky at times, though, because ImageMagick is
installed on some distros by its mixed-case name, and others all in lower-case. Similarly, some distros
use ‘fd’, some ‘fd-find’ and one uses ‘fd-find’ but calls it ‘fd’! If your distro is not on the specifically-
supported list, the generic instruction to install packages will still be shown -but you’ll have to work
out for yourself whether your particular distro knows a program by one name or another.

Unless the notes indicate otherwise, Giocoso worked fine on all distros listed! Remember that Giocoso
integration can only work on Gnome, KDE and XFCE desktops at present.

Giocoso User Manual v1.0 Page 88

https://distrowatch.com/
https://distrowatch.com/

Distro Version(s) Desktop
Environment(s)

Distro
Notes

Arch ‘rolling’ GNOME 5

Solus 4.2 Budgie:GNOME 6

Ubuntu 20.04.2 LTS (Focal Fossa) Ubuntu:GNOME

EndeavourOS 2021.04.17 Budgie:GNOME 6,7

Pop!_OS 20.04 LTS pop:GNOME 8

openSUSE 15.3, 20210618 KDE 9

Linux Mint 20.1 (Ulyssa) XFCE

MX 10 (buster) XFCE

Raspbian 10 (buster) LXDE 10

Debian 10 (buster) MATE 11

Fedora 34 (Workstation Edition) GNOME 12

Manjaro ‘rolling’, 21.0.7 KDE 13

General Note s :

1. All distros (except Raspbian and Manjaro) were run in KVM virtual machines with 8GB virtual
RAM and 8 vCPUs. I assume physical installations onto real PCs and laptops are the same as
virtualised ones, but cannot prove it!

2. Version is whatever is reported by cat /etc/os-release | grep -i version, unless that
returns blank, in which case it’s whatever cat /etc/lsb_release reports. Desktop
environment is whatever is reported by echo $XDG_CURRENT_DESKTOP

3. All distros were installed with default options. The O/S was then immediately and fully
updated. Giocoso was the first non-default program installed post-installation and post-update,
following a reboot. Whatever software Giocoso prompted to install was then installed
following Giocoso’s suggested commands.

4. Some distros in the Distrowatch top 10 are derived from others (usually Arch or Ubuntu). If
Giocoso has been tested on one of those parent distros, I generally haven’t felt the need to test
it specifically on the derived distros (Pop!_OS and MX being notable exceptions).

Distro-Specific Notes

5. Arch was built with a Gnome desktop, as per the instructions at absolutelybaching.com. As a
‘rolling’ release, it doesn’t report a version number, just the word ‘rolling’. There’s no /etc/lsb-
release on Arch by default, either… and when it’s installed, it doesn’t tell you anything other
than ‘rolling’, too.

Giocoso User Manual v1.0 Page 89

https://absolutelybaching.com/technical-articles/building-an-arch-virtual-machine/

6. Budgie allegedly uses its own unique desktop environment -but it reports as essentially Gnome
with knobs on! Gnome-equivalent integration, playback and album art display all work fine in
consequence.

7. I chose to install EndeavourOS with the Budgie desktop, but MATE, Cinnamon, KDE, Gnome,
XFCE and pretty much all others are possibilities. I did not test EndeavourOS with any of these
other desktop environments, though -and MATE and Cinnamon definitely won’t work with
Giocoso’s --integrate option. EndeavourOS doesn’t report a version number when inspecting
/etc/os-release. The ‘BUILD_ID’ is listed as 2021.04.17, however.

8. Pop!_OS installed by default with an X display numbered 1; everyone else numbers at 0. Code
was modified to deal with this and all worked fine thereafter.

9. openSUSE was tested in both ‘static’ (i.e., 15.3) and ‘rolling’ (i.e., Tumbleweed) versions,
though the KDE desktop was used for both. Static reports version 15.3, Tumbleweed reports
what looks like a build-date (of 18th June 2021). Both types of openSUSE require the addition
of the Packman repository to get ffmpeg (which Giocoso will explain how to do, if you haven’t
already added it).

10. My Raspberry Pi uses Raspbian, which is basically Debian built for ARM. Accordingly, version
reports precisely as if it were Debian, but the desktop is the lightweight LXDE, with which no
Giocoso desktop integration is, unfortunately, possible.

11. Debian was run with the MATE desktop: no integration testing is possible with this desktop
environment. Everything else worked fine. Debian with KDE, XFCE or Gnome desktop
environments can be expected to work perfectly (but not actually tested!)

12. According to echo $XDG_SESSION_TYPE, I was running ‘wayland’ (which has been the default
display server protocol for Fedora since version 25, back in 2016). I expected trouble from
Wayland, but there was none. Integration, playback and album art display all worked fine, first
time of asking. Fedora doesn’t ship ffmpeg in the standard repositories, so Giocoso-on-Fedora
requires (and prompts for, if necessary) the installation of the RPM Fusion repository first.

13. Based on Arch, Manjaro reports ‘rolling’ as its version, but in /etc/lsb-release, it reports 21.0.7.

I should perhaps conclude by mentioning that Manjaro is the desktop I use every day; Ubuntu is
installed on a physical laptop I use sometimes; and Fedora is on another laptop I use occasionally.
Those three distros are the ones I’m most familiar with in real-world, physical PC-based situations.
Over time, therefore, you may find that (say) Pop_OS! changes something that breaks Giocoso… and I
wouldn’t know about it for a long time, because I simply don’t use it, except in a testing virtual
machine.

The short version is: if you are using a ‘niche’ distro, I will do my best to support it in the future, but
cannot guarantee anything. If you are on one of the more mainstream distros, I’m likely to spot and fix
breakages more quickly.

Giocoso User Manual v1.0 Page 90

Appendix A:
Differences between Giocoso and AMP
Giocoso is built on the same fundamental code-base as the earlier AMP (“Absolutely Baching Music
Player), but there are some significant differences between the two players which users migrating from
AMP may want to familiarise themselves with, as follows:

• AMP scrobbled unless you tell it not to (assuming scrobbling had been configured). Giocoso
doesn't scrobble unless you positively ask it to with the --scrobble parameter (or the
GIO_SCROBBLE=1 environment variable).

• AMP Scrobbling required the downloading and running of a completely separate amp-
scrobbler.sh shell script. Giocoso scrobbles ‘natively’ (without the need for extra scripts, etc).

• When running with --report , AMP exported the entire record of plays, every time. Giocoso can
do full exports, too, but can also do differential ones: i.e., only export those plays which weren't
on the previous export. It achieves this by keeping a record of the largest play number it ever
reached to during an export.

• AMP had a lot of odd statistical selection overrides (i.e., --levelup, --xlevelup and --xxlevelup).
Those have all been removed from Giocoso. The --unplayed and --unplayedworks parameters
continue to exist, however, and it is now felt that they are able to boost under-performed
composers and works sufficiently by themselves

• AMP had a fast database refresh mode (which was the default and the only thing which really
populated the tables AMP selected from) and a full refresh, which went through every track in
a music collection, populated a tracks table, but then didn't really do much with the data after
that. Giocoso has dispensed with the fast refresh. It always does what AMP would have called a
'full refresh', and though this is much slower than the fast refresh, it allows it to collect
information from music tracks (such as their length) which AMP was unaware of. One known
drawback of this approach: adding one new CD to a collection requires a complete refresh to
take place. One big advantage of this approach: selections using --minduration and/or --
maxduration now work hundreds of times faster (see the next point for elaboration).

• AMP only applied --min and --maxdurations as filters after a music selection had been made.
This meant having to iterate through a select-test for duration-reject loop, until something
luckily passed the duration test and didn't need to be rejected. Giocoso now stores the duration
of all recordings in its database, so duration filters are applied at the selection phase,
eliminating the need to iterate through a test/reject cycle. The data is known to meet the
duration criteria by the fact it got selected in the first place. Naturally, this makes using the
duration filters much faster.

• AMP had a fairly convoluted two-mode method of working that was sometimes three modes!
That is, you could run it directly in a folder, and it would play music it found there. Or you
could run it in a folder which was a folder containing other folders that themselves then

Giocoso User Manual v1.0 Page 91

contained music, and it would randomly pick a folder and play its music. Or you could run it
with a --dbname switch and it would select something at random from the database. Giocoso
simplifies this model and only has two modes of play: either with a database (in which case,
what gets played is random) or by running it directly in a folder containing music, in which case
that folder's music is played, without randomness. If you run Giocoso in a folder that is merely
parents of other folders that contain FLACs, you will be told that no FLACs are present in the
current folder, and Giocoso will simply quit.

• AMP could not play a specific recording via the database: if the database was used, the
selection of what to play was always random (though you could affect the selection by asking for
a specific composer, a specific genre and so on. Giocoso allows you to ask for specific recording
to be played with the new --record_number=x, where x is the specific recording number as
stored in the database's RECORDINGS table. If you know the recording number, you can
therefore invoke Giocoso with a database and get it to play a specific recording, whereby its
details are then subsequently added to the PLAYS table (and can be used in determining
timebars and so on).

• A new --albumlist option allows Giocoso to generate and display a report of album titles and
their album numbers, to help with the new ‘play specific recording’ feature itemised above. The
report is ordered by composer name, so though it's likely to be rather long for large music
collections, it should be quick to find a specific recording. Additionally, a --
composername=yyyy filter can be added when generating the albumlist, and that will only
output that composer's compositions, making finding a specific recording number even easier.
This is all functionality that AMP lacked.

• Giocoso can import the PLAYS table from a previous AMP installation (using the --
importplays=xxxx runtime parameter, where 'xxxx' is the full path to the old AMP database).
You can therefore comfortably transition from AMP to Giocoso without losing precious data
about what music you've been listening to for the previous many weeks or months. This
functionality also allows Giocoso to re-import plays from another Giocoso database, so
database recovery is now possible.

• AMP either used the default audio device, or you had to specify a specific device with a --device
runtime parameter. Giocoso follows those rules, too, but can also use a
GIO_AUDIODEVICE=xxxx environment variable to tell it how to play music. This is
important to be able to do, because Giocoso can be invoked from within a file manager (such as
Dolphin or Nautilus) with a right-click, at which point there is no opportunity to pass any
device information. The use of the environment variable therefore allows this right-click-and-
play-folder functionality to still use a user-specified audio device, in environments where the
choice of device makes a significant quality difference.

• As just mentioned, Giocoso has been added to context-sensitive (i.e., right-click) menus for
KDE's Dolphin file manager. AMP was never integrated into the OS like that.

• AMP used to require you to say --usedb and --dbname=xxxx before it would use a database to
trigger randomised plays/. Giocoso takes a slightly more rational approach: if you’ve

Giocoso User Manual v1.0 Page 92

mentioned a database name with the --dbname parameter, it’s pretty obvious you intend to use
it! Therefore, in Giocoso, --dbname=xxxx is the only parameter you need to supply to trigger
database-sourced random playback: the --usedb parameter has been removed entirely.

• When using a database, AMP still liked you to specify --musicdir=yyyy so that it could strip the
supplied parameter value from the full paths to music found in the database. Without it, AMP
would work, but the display of what folder’s music was being played would be very long.
Giocoso now stores the --muscdir path supplied when creating/rescanning a database, so there
is no longer a need to mention it when using the database for playback. It already knows the
‘root’ of your music collection and automatically knows to strip that from the full paths of
music folders for display purposes.

• Album art is still displayed by default and the --artsize parameter still takes values of small,
medium or large. However, it now also takes a value of none, which is how you stop album art
being displayed at all. AMP could also switch off album art display, but used a separate
parameter called --noart to do it. That parameter no longer exists in Giocoso.

• Still on album art: Giocoso now adds the ALBUM tag text to the bottom of the album art
display, so that just by looking at the art work (which might have been on a CD containing a
dozen different pieces) you can tell precisely what composition is being played.

• The GPL v.2 License can now be viewed within Giocoso (using the --license runtime
parameter), instead of having to visit a URL and download it manually, as in AMP days.

• Giocoso has an option to --register the product (basically, email me something so I know how
many people are using it and on what distros ...see Appendix C for details)

For the most part, despite all these listed differences, if you were comfortable with getting AMP to play
your music collection, you’ll have no difficulty transitioning to Giocoso. Basically, just remember to
actively choose scrobbling (if you want it at all) and remember that --usedb is now redundant: the rest
is all just details ☺

Giocoso User Manual v1.0 Page 93

Appendix B:
The Requirement for Sudo Privileges
Giocoso does not require sudo (i.e., acquired root privileges) for ordinary operation, but you will need
it for (a) installation and (b) desktop environment integration (that is, if you’re going to use the
--integrate option).

Sudo privileges mean you stay you, and you supply your password, but you acquire temporary rights to
run with root privilege and are thus allowed to create or modify files in restricted folders (like
/usr/bin). It’s a safer way of doing things than becoming root directly, which would give you permission
to do anything at all for as long as you liked.

Most distros, during installation, tend to ask you for a user account and automatically give that initial
user account sudo privileges, so you do not then need to do anything at all. Giocoso or related scripts
will prompt you for your ‘sudo password’ if necessary, and you just supply your ordinary user account
password at that point, and all will be well.

But not all distros do this: Debian, for example, does not and trying to run a sudo command produces
this foreboding error:

...which is quite funny on a home PC where the only person to report to is yourself!

Anyway, for distros where you cannot automatically exercise sudo rights, here’s the workaround. First,
become root. Second, set the default editor to nano or even a graphical text editor of your choice: if
you need help setting sudo, you do not want the pain and hassle involved with using most distros’
default text editor, which is vi. Finally, you invoke the visudo program and add one line of text to the
existing file and save it.

It’s just four steps, in other words. Here are the first three, spelled out, as you’d type them in a terminal:

su - root

 export EDITOR=nano

 visudo

The first command requires you to be able to provide root’s password when asked. Assuming you know
that, you’re in business. When the visudo program runs, you want to find the line which reads:

root ALL=(ALL:ALL) ALL

… and type, underneath it, an equvalent line such as:

Giocoso User Manual v1.0 Page 94

hjr ALL=(ALL:ALL) ALL

The first part of that new line is your own username: in my case, it’s ‘hjr’, but you replace that with
whatever username you actually log onto your Linux PC with.

Then you save the modified file: in nano, you press Ctrl+X, then tap ‘y’ to confirm the save, and press
Enter to save the modified file with the filename proposed. Job done: you can now stop being root (so,
type exit). And now you can run any command with root privileges, just by prefixing the command
with the word ‘sudo’:

This time, the ‘ls /usr/bin’ command produces no error at all.

As I say, there are only two occasions when Giocoso requires the use of sudo: installation and
integration with your choice of desktop environment.. and both of those occasions are strictly ‘one-off ’
affairs.

You definitely do NOT need sudo privileges to run Giocoso for the purposes of ordinarily playing music!

Giocoso User Manual v1.0 Page 95

Appendix C: Product Registration
Another run-time parameter is available to Giocoso users: --register. It doesn’t really do anything much
except display the following wall of text:

 Giocoso: The Classical Music Player 𝄢𝄡 𝄢𝄡
 Copyright © Howard Rogers 2021
 Version 1.00 - Non-Play Activities

 Registration is entirely optional, but it would help me to know how many people are
 using Giocoso and what distros they're running it on. If you wouldn't mind emailing this code:

 Manjaro Linux-L21.0.7-h7gdJSHGF…...hcIZSps8ui9zO

 ...to: registration@absolutelybaching.com, it would be much appreciated and will
 also help me improve the program in the future. The code is a randomly-unique string that
 means nothing and divulges no personal information, prefixed by the identifier/version number
 of the Linux distro you're using.

 No aspect of Giocoso's performance or functionality is impacted if you choose not to send it.
 Many thanks, Howard Rogers.
===

Basically, the option generates a unique, random and completely meaningless 24-character code and
then prefixes it with the name of your distro (as contained in the /etc/os-release file) and the version
number of that distro, either contained in either the /etc/os-release file or the /etc/lsb-release one. If
neither file contains a version number, it’s reported as ‘0’.

The random string element of the registration code is derived from /dev/urandom, so it has no
significance or meaning and does not and cannot be used to identify anything about you personally or
your PC. It’s uniqueness simply means I can tell one person’s Fedora 34 apart from another one’s.

Registering consists of sending this ‘code’ in full to registration@absolutelybaching.com. You do that
entirely manually using whatever email client you like. I’d suggest using the registration code as the
email’s subject, leaving the body empty; but if you stick it in the body of the email, that’s fine too.

The process is entirely optional and if you choose not to register Giocoso in this way, it’s functionality is not
altered or restricted in any way. You also gain no specific benefit or advantage by registering.

Registering Giocoso, though, lets me know a little about how many people are using it and on what
distros. I’ll test more on distros I know to be in use than on those I know no-one is using, for example.

So: registering the product by emailing me a unique code is helpful to my future development efforts.
But if you prefer not to, that’s entirely fine, too. This complete optionality is why I didn’t document the
feature back in Section 10, along with all the other run-time parameters. I want you to feel comfortable
registering it or not, as you deem appropriate -but I nevertheless hope you will send me that email after
all!

Giocoso User Manual v1.0 Page 96

mailto:registration@absolutelybaching.com

Appendix D: Giocoso on Windows
Way back on page 6, in the very first sentence of this manual, I pointed out that Giocoso is a Linux
Music Player. It doesn’t run on FreeBSD or Solaris, for example (though it might do: I just haven’t tested
it to find out!). And it definitely doesn’t run on Windows.

Or does it?!

Well, clearly it can… but it is tediously difficult to make it do so right now (future versions of Windows
10 and 11 might make it considerably easier, though).

It’s really beyond the scope of a user manual to explain in detail how this particular bit of wizardry was
achieved, but in summary:

• As a Windows Insider, I was able to upgrade to Windows 11 and install the new Windows
Subsystem for Linux version 2 with graphics (WSL2g)

• I then installed Ubuntu 20.04 from the Windows Store

• Quite a bit of fiddling with package installation and user permissions ensued!

• Giocoso installation and subsequent configuration and running then just happens as it would
normally on a ‘proper’ Linux PC.

It’s a lot of effort to go to, and frankly, I can’t say I think it’s an effort most regular Windows users are
going to be brave enough to expend! As I say, if Windows 10 or 11 makes running WSLg easier in the
future, my opinion on that might change.

Anyway, for now: I just wanted you to know that it is possible to run Giocoso on Windows, provided
you run it on Linux-within-Windows-with-Graphics, via WSL2g.

Giocoso User Manual v1.0 Page 97

Acknowledgements
I’d like to thank the developers of ffmpeg, ImageMagick, sqlite and all the other open source software
that Giocoso uses and coordinates to pull off its music playing tricks: Giocoso is really only an
‘orchestrating script’, rather than a complex piece of software in its own right, and would be nothing
without the real programming efforts of all those developers.

Giocoso’s scrobbling abilities arise directly out of the original capabilities of the MOC-Scrobbler,
written by a user called ‘pachanka’. I have hacked the original work about quite a bit to enable a couple
of its core capabilities to be embedded directly inside Giocoso… but, fundamentally, without all that
work by someone else on the MOC Scrobbler, Giocoso couldn’t scrobble at all. So, I’m grateful to
pachanka -with whom I’ve had no communication about what I’ve done to his or her work,
incidentally, so any coding horrors arising out of my tinkering with the original work are entirely my
own fault.

Giocoso User Manual v1.0 Page 98

https://goto.pachanka.org/moc-scrobbler

	1.0 Introducing Giocoso
	1.1 Some Prior History
	1.2 The Name
	1.3 What can Giocoso play?
	1.4 Why Giocoso?

	2.0 Prerequisites for running Giocoso
	2.1 Giocoso’s Digital Storage Expectations
	2.1.1 The Folder is Key
	2.1.2 File Numbering/Naming affects play order
	2.1.3 Tag Fields and Appropriate Data
	2.1.4 Giocoso and the Axioms of Classical Tagging

	2.1.5 Music Ownership

	3.0 Installing Giocoso
	4.0 Giocoso – First Run
	5.0 Giocoso’s Play Modes
	5.1 Direct Play Mode
	5.2 Random Play Mode
	5.3 Summary of Play Modes
	5.4 Pausing and Terminating Play

	6.0 The Giocoso Program Display
	6.1 Play Window
	6.2 Album Art Display

	7.0 Integrating Giocoso with the Desktop
	7.1 KDE - Plasma
	7.2 XFCE - Thunar
	7.3 Gnome - Nautilus
	7.4 Budgie
	7.5 Other Desktop Environments
	7.6 Remembering Album Art Display Location

	8.0 Scrobbling
	8.1 Configuring Scobbling
	8.2 Getting Giocoso to Scrobble
	8.3 How Giocoso Scrobbles
	8.4 Scrobbling with Embedded Cuesheets

	9.0 The Giocoso Database
	9.1 Creating a Database
	9.2 Refreshing a Database
	9.3 Table Structures and Methodology
	9.4 Schema Description
	9.5 Accessing the Database
	9.6 Backing up the Database
	9.7 Recovering the PLAYS table

	10.0 Run-Time Parameters
	10.1 Initialization Parameters
	10.1.1 Createdb
	10.1.2. Refreshdb
	10.1.3 Musicdir
	10.1.4 Importplays
	10.1.5 Scrobble-config
	10.1.6 Checkver
	10.1.7 License/Licence

	10.2 Appearance/Behaviour Parameters
	10.2.1 Displaycolour/Displaycolor
	10.2.2 Artisize
	10.2.3 Captiontext
	10.2.4 Captionbackground
	10.2.5 Listcolours
	10.2.6 Scrobble
	10.2.7 Device
	10.2.7 Editor

	10.3 Selective Parameters
	10.3.1 Dbname
	10.3.2 Selections
	10.3.3 Pause
	10.3.4 Timebar
	10.3.5 Genre
	10.3.6 Composer
	10.3.7 Performer
	10.3.8 Comment
	10.3.9 Composition
	10.3.10 Recordnumber
	10.3.11 Unplayed
	10.3.12 Unplayedworks
	10.3.13 Minduration
	10.3.14 Maxduration
	10.3.15 Negate

	10.4 Reporting Parameters
	10.4.1. Report
	10.4.3 Reportsort
	10.4.2 Reportdays
	10.4.4 Reporttype
	10.4.5 Recordinglist
	10.4.6 Composername
	10.4.7 Stats

	10.5 Run-time Parameter Summary

	11.0 Some Technical Extras
	11.1 Use of ALSA
	11.2 Lost Scrobbles
	11.3 Fonts
	11.4 Aliases
	11.5 Transitioning from AMP to Giocoso
	11.6 Tested Distros

	Appendix A: Differences between Giocoso and AMP
	Appendix B: The Requirement for Sudo Privileges
	Appendix C: Product Registration
	Appendix D: Giocoso on Windows
	Acknowledgements

